
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)

14/2 (2021), 113-126. DOI: http://dx.doi.org/10.21609/jiki.v14i2.957

113

Increasing The Capacity of Headstega Based on Bitwise Operation

Hasmawati, Ari Moesriami Barmawi

1,2 Department of Informatics, Faculty of Informatics, Telkom University, Jl. Telekomunikasi No. 1

Terusan Buah Batu, Bandung, 40257, Indonesia

1 hasmawati@telkomuniversity.ac.id, 2mbarmawi@melsa.net.id

Abstract

Headstega (Head steganography) is a noiseless steganography that used email headers as a

cover for concealing messages. However, it has less embedding capacity and it raises

suspicion. For overcoming the problem, bitwise operation is proposed. In the proposed

method, the message was embedded into the cover by converting the message and the cover

into binary representation based on a mapping table that was already known by the sender

and the receiver. Furthermore, XOR bitwise operations were applied to the secret message

and cover bits based on random numbers that were generated using a modular function.

Moreover, the result was converted into characters that represent the secret message bits.

After embedding the message into the cover, an email alias was generated to camouflage the

secret message characters. Finally, the sender sends the embedded cover and the email alias

to the recipient. Using the proposed method, the embedding capacity is 89% larger than using

the original Headstega. For reducing the adversary’s suspicion, the existing email address

was used instead of creating a new email address.

Keywords: Noiseless Steganography, Headstega, XOR bitwise operation

1. Introduction

Recently, the use of communication and

information exchange are increasing. Since

important information should be secured during

information exchange, security against cheaters or

eavesdroppers is necessary [1]. One method for

securing information is steganography [2]. There

are several types of steganography based on the

covers used for camouflaging secret messages such

as audio steganography [3], text steganography [4,

5, 6], image steganography [7, 8], and video

steganography [9, 10]. Steganography can be

classified as noisy [7, 9] and noiseless [11, 12]. In

this research, noiseless steganography is observed.

One of noiseless steganography is Headstega

proposed by Desoky. Headstega is a steganography

that camouflages data in an email header [12].

The drawback of Headstega is that the less

embedding capacity and it raised suspicion since

for embedding a message, a new email address is

necessary. The capacity is low because the secret

message was embedded into the first alphabetical

character of the email address and also into

numerical character in the email address. In other

words, 4 bits of the secret message are embedded

into the first alphabetical character of the email

address while the next 7 bits are embedded in the

numerical character, such that this method conceals

4 - 11 bits in each email address.

For overcoming the drawback, bitwise

operation for embedding the message into the

cover was proposed. In this case, the cover was an

existing email address. The basic idea of the

method was embedding a message into the cover

based on mapping table. The embedding process

was done by converting the message and the cover

into binary representation based on a mapping table

that was already known by the sender and the

recipient. Furthermore, bitwise operations were

performed on these bits based on random number

that was generated using a modular function. After

embedding the message into the cover, the binary

numbers that represent the secret message were

converted into characters and then email alias was

generated based on these characters to camouflage

the secret message characters. Finally, the sender

sent the embedded cover and the email alias to the

recipient.

The experiments were performed using 30

different covers and 30 messages of various

lengths. The results of the experiment showed that

the proposed method has a higher embedding

capacity than the previous one. The proposed

method can embed messages 89% larger than the

previous method. Moreover, the previous method

required the cover 95% higher than the proposed

http://dx.doi.org/10.21609/jiki.v14i2.957
mailto:hasmawati@telkomuniversity.ac.id
mailto:mbarmawi@melsa.net.id

114 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

method when observed in terms of the number of

covers used. For reducing the adversary’s

suspicion, the existing email address is used. Thus,

a new email address generation process is not

necessary.

2. Related Work

Headstega is a method in Noiseless

Steganography area or Nostega that camouflages

messages in a part of email header such as email

address, subject, cc, etc [11, 12]. Headstega

consists of two main methods, encoding, and

decoding. The encoding method consists of

message encoding and message camouflaging. The

architecture of the Headstega is shown in Fig. 1.

Fig. 1. The architecture of Headstega [12]

Message encoding is a method for encoding a

message into an appropriate form based on the

encoding parameters and steganographic coding

map that was predefined. The secret message is

converted and grouped into a certain length of a

binary number. Furthermore, the binary

representation is converted into a letter based on

the coding map for steganography. The encoded

message is camouflaged to generate the stego cover

(email header) which conceals that encoded

message. For example, according to the coding

map in Table 1 [12], four bits slice "0111"

represented the letter "H or X". Thus, the first

characters of the email address that will be

generated for embedding 0111 are letter H or X.

Message decoding is used for extracting the

encoded message from the email address. For

example, the receiver receives an email which

consists of a group of receivers whose email

addresses are "Hasmawati@test.xyz",

"Erisdian@test.xyz". The secret message is

extracted from these email addresses based on the

same coding map used in message encoding

method. Since the first character of the first email

address consists of letter "H", then, "0111" is

extracted. For the second email address

“Erisdian@test.xyz”, “E” is found as the first letter,

then the binary number extracted from E based on

the code mapping table is “0100”. If those binary

codes are concatenated, then "01110100" is

obtained. Since this binary representation of the

encoded message is equal to 116 in ASCII code,

then it will be translated into the original message

‘t’.
Table 1. Headstega code mapping table[12]

No Binary Letters No Binary Letters

1 0000 A or Q 9 1000 I or Y

2 0001 B or R 10 1001 J or Z

3 0010 C or S 11 1010 K

4 0011 D or T 12 1011 L
5 0100 E or U 13 1100 M

6 0101 F or V 14 1101 N

7 0110 G or W 15 1110 O
8 0111 H or X 16 1111 P

3. Proposed Method

For increasing the capacity of Desoky’s method

[12] as has been discussed in section 1, the bitwise

operation was introduced in the proposed method.

The architecture of the proposed method is shown

in Fig. 2.

Fig. 2. The architecture of the proposed method

The main difference between Desoky’s and the

proposed method is that the cover generation was

not necessary in the proposed method because the

existing email address can be used as the cover.

Suppose Alice sent a secret message to Bob by

email, then Alice embedded the secret message into

the email address. For embedding the secret

message, Alice needed a code mapping table such

that Bob could extract the message using the same

code mapping table. Therefore, the code mapping

mailto:Erisdian@test.xyz

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 115

table should be agreed upon in advance by Bob and

Alice. The embedded message was represented as

a sequence of characters. For extracting the

message, Bob used the code mapping table and the

characters to obtain the secret message.

The proposed method consisted of two main

processes, encoding, and decoding. The sender

conducted message encoding by embedding the

secret message into a cover (existing email

address). The receiver conducted message

decoding by extracting the secret message from the

cover.

3. 1. Message Encoding Process

The basic concept of message encoding was

converting the secret message from letters into five

bits binary codes based on the mapping table (table

2) that was already known by both parties. All five

bits binary codes were concatenated to obtain the

message bit stream. After converting the secret

message into the message bits stream, the email

address was also converted into five bits binary

codes and concatenated all email addresses to

obtain the cover bits stream.

The next process was XOR-ing the secret

message and the cover bits stream. For increasing

the security, the bit location where the XOR

process starting point should be randomized, such

that it was not easy for the attacker to find the

location of the embedded secret message. For

indicating the location of the embedded secret

message, the random number generation was

necessary. The random number was calculated

based on the modulo function of the number of

characters used in the mapping table, the time when

the email was sent, the length of the secret

message, and the length of the cover.

Finally, the result of the XOR process were

encoded into a character based on Table 2 and then

generated email alias to camouflage the secret

message characters. The overview of message

encoding is depicted in Fig. 3.

Fig. 3. Message encoding process

3. 2. Converting the Secret Message and the

Cover into Five Bits String

The objective of this algorithm was to convert

the secret message and the email address into a

binary numbers. The conversion process consists

of the following steps.

1. Each character of the email address and

secret message were converted into five bits

binary code based on Table 2.

2. Concatenating all five bits binary codes of

the secret message to represent the secret

message in binary form. A similar process

was applied on the cover.

The algorithm for converting the secret

message and the cover into five bits binary codes is

depicted in Fig. 4.

Table 2. Character to five bits string mapping table

Char Binary Char Binary Char Binary

a 00001 l 01100 w 10111

b 00010 m 01101 x 11000

c 00011 n 01110 y 11001

d 00100 o 01111 z 11010

e 00101 p 10000
comm

a
11011

f 00110 q 10001 period 11100

g 00111 r 10010 space 11101

h 01000 s 10011 sign @ 11110

i 01001 t 10100
unders
core

11111

j 01010 u 10101 questi

on
mark

(?)

00000
k 01011 v 10110

The character to five bits string mapping table

as shown in Table 2 consisted of 26 alphabetic

characters and some special characters. These

special characters were selected based on the

occurrence frequency of the specific characters in

email addresses and words in Indonesian language.

Generally, email addresses consist of a sequence of

alphabetic characters and some special characters

such as commas, periods, spaces, @ signs,

underscores, and question marks (?), as well as

words in Indonesian language. The output of this

algorithm was the binary form of secret messages

and covers.

116 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

Fig. 4. Algorithm for converting the secret message and the

cover into five bits string

3. 3. Embedding Secret Message

The objective of this algorithm was to embed

the secret message using the XOR operation. This

process consists of the following steps :

1. Counting the length of secret message and

cover bits stream

2. Determining the beginning location of the

XOR process using equation (1)

𝑖 = 𝑙𝑢 𝑚𝑜𝑑 (𝑥 − 𝑦) (1)

where 𝑖 is the starting location of the XOR

process, 𝑙 is the number of characters used

in the mapping table, 𝑢 is the time when the

email was sent, 𝑥 is the length of the cover

bit stream, and 𝑦 is the length of the secret

message bits stream. If 𝑖 + 𝑦 > 𝑥 then the

XOR process for the remainder was started

from the first character of the cover.

3. XOR the secret message bits with the cover

bits starting from the location 𝑖 that was

obtained from step 2.

The output of this algorithm is the embedded

secret message in binary form. The algorithm for

embedding the secret message is shown in Fig. 5.

Fig. 5. Algorithm for embedding the secret message

3. 4. Converting the Binary Form of Embedded

Secret Message into Character

The objective of this algorithm was for

converting the binary of embedded secret message

into the seed of alias by converting it into a

character based on Table 2. The process for

converting the binary of embedded secret message

into character consists of the following steps:

1. Slicing the binary of embedded secret

message into a group of five bits.

2. Each five bits string was converted into a

character based on Table 2. This character is

the alias seed character.

The output of this algorithm was the alias seed

characters. The algorithm for converting the binary

of embedded secret message into character is

shown in Fig. 6.

3. 5. Generating Email Alias

The objective of this algorithm was to generate

an email alias representing the character that was

sent to the recipient. The process for generating

alias consists of the following steps.

1. Determining the rules for generating the

email alias using equation (2)

𝑟 = 𝑙𝑢 𝑚𝑜𝑑 𝑥 (2)

where 𝑟 is the result of the modular function

(the number for choosing the rule used to

construct the email alias), 𝑙 is the number

of characters used in the mapping table, 𝑢

Algorithm 1: Converting the secret
message and cover into five bits
string
Input : email address (cover),
secret message
Output : cover bit stream and
secret message bit stream

cbs  empty string
for i 0 to len(cover) do
 cbscbs||conv_char2bin(cover[i])
endfor

smb  empty string
for i 0 to len(sm) do
 smbsmb||conv_char2bin(sm[i])
endfor
return cbs, smb

note:
1. cbs : cover bit stream
2. smb : secret message bit stream
3. sm : secret message

Algorithm 2: Embedding the secret
message
Input : time, mapping_table, cover
bit stream and secret message bit
stream
Output : embedded secret message bit
stream
ilen(mp)^t mod(len(cbs) – len(smb))
cstrsubStr(cbs, i, len(cbs))
esmb  cstr XOR smb
return esmb
note :
1. i : starting location of XOR

process
2. t : time the email was sent
3. cstr : cover substring
4. mp : mapping table
5. cbs : cover bit stream
6. smb : secret message bit stream
7. esmb: embedded secret message bit

stream

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 117

is the time when the email was sent, 𝑥 is the

length of the cover bit stream.

2. If the result of equation 2 is even, then

generate the email alias based on rule A,

where rules A is as follows:

1) If the first letter of the alias seed

characters was a vowel, then added

one consonant after a vowel

2) If the first letter of the alias seed

characters was a consonant, then

added one vowel after a consonant,

3) For the second until the last character

of the alias seed characters, added one

vowel before a consonant or one

consonant before a vowel

4) For special characters, an additional

character is not necessary

3. If the result of equation 2 is odd then

generate the email alias based on rule B, as

follows:

1) If the first letter of the alias seed

characters was a vowel, then added

one consonant before a vowel.

2) If the first letter of the alias seed

characters was a consonant, then

added one vowel before a consonant.

3) For the second until the last character,

added one vowel after a consonant or

one consonant after a vowel

4) For special characters, an additional

character was not necessary

 The output of this algorithm was the email

alias that will be sent to the recipient. The

algorithm for generating email alias is shown in

Fig. 7.

Fig. 6. Algorithm for converting the binary of embedded secret

message into character

Fig. 7. Algorithm for generating the email alias

Algorithm 3: Converting the binary
of embedded secret message into
character
Input : embedded secret message
bit stream
Output : alias seed character
sb  slice esmb into five bit
as  empty string
for i  0 to len(sb) do
 as  as || conv_bin2char(sb[i])
endfor
return as

note:

1. sb: sliced bit

2. esmb: embedded secret

message bit stream

3. as : alias_seed_character

Algorithm 4: Generating Email Alias
Input : alias seed character, time,
cover bit, mapping_table
Output : email alias character

r <- len(mp) ^ t mod len(cb)
 if r % 2 == 0 then
 if as[0] is v then
 ea  as[0] + random c
 else if as[0] in c then
 ea  as[0] + random v
 else
 eaas[0]
 endif
 for i 1 to len(as) do
 if as[i] is v then
 ea ea + random c + as[i]
 else if as[i] is c then
 eaea + random v + as[i]
 else
 ea  ea + as[i]
 endif
 endfor
 else
 if as[0] is v then
 ea  random c + as[0]
 else if as[0] is c then
 ea  random v + as[0]
 else
 ea  as[0]
 endif
 for i 1 to len(as) do
 if as[i] is v then
 ea  ea + as[i] + random c
 else if as[i] is c then
 ea  ea + as[i] + random v
 else
 ea  ea + as[i]
 endif
 endfor
 endif
 return ea

note :

1. mp : mapping table
2. t : time the email was sent
3. cb : cover bit stream
4. as : alias_seed_character
5. ea : email_alias_character
6. v : vowel
7. c : consonant

118 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

3. 6. Implementation of Message Encoding

For implementing the message encoding, the

secret message length must be less than the cover

length.

1. Suppose the secret message is ‘waspada’,

the cover is‘hasmawati@telkomuniversity.

ac.id’ and the time when the email was sent

is 01:26.

2. Converting ‘waspada’ into five bits

representation, such as w=10111, a=00001,

s=10011, p=10000, a=00001, d=00100,

a=00001 then concatenated all five bits of

the character representation. The

concatenation result is

‘1011100001100111000000001001000000

1’.

3. Converting’hasmawati@telkomuniversity.

ac.id’into five bits binary and concatenated

them. The results is ‘010000000110011011

01000011011100001101000100111110101

00001010110001011011110110110101011

10010011011000101100101001101001101

00110011110000001000111110001001001

00’.

4. Counting the length of the secret message

bits stream. The length of

‘1011100001100111000000001001000000

1’ is 35.

5. Counting the bit length of the cover resulted

from step 3 which is 160.

6. Determining the starting location of the

XOR process by calculating 𝑖 =
𝑙𝑢 𝑚𝑜𝑑 (𝑥 − 𝑦) = 32126 𝑚𝑜𝑑 (160 − 35).

The result is 57.

7. XOR the secret message bits stream

‘1011100001100111000000001001000000

1’ with the cover bits stream

‘0100000001100110110100001101110000

11010001001111101010000101011000101

10111101101101010111001001101100010

11001010011010011010011001111000000

100011111000100100100’ starting from bit

100. The result of the XOR process is

‘0001010000111100110110111100011100

0’ which is called as embedded secret

message.

8. Slicing ‘000101000011110011011011110

00111000’ into group of five bits where the

result is ‘00010’, ‘10000’, ‘11110’, ‘01101’,

‘10111’, ‘10001’, ‘11000’.

9. Converting each five bits code into

character based on Table 2 such as ‘00010 =

b’, ‘10000 = p’, ‘11110 = @’, ‘01101 = m’,

‘10111 = w’, ‘10001 = q’, ‘11000 = x’.

The result is bp@mwqx.

10. Generating email alias based on Algorithm

4 in Figure 7. Since the result of modular

function using equation 2 is even then the

generating process was performed using the

algorithm in rules A. The result is

boip@amiwaqux.

3. 7. Message Decoding Process

The basic concept of message decoding was

extracting the secret message from the stego email

header. The message decoding process started by

extracting the received email alias to obtain the

alias seed characters. Furthermore, all characters

should be converted into five bits binary code to

obtain the binary string of alias seed characters.

Similarly, the email address was also converted

into five bits binary code to obtain the cover bit

stream. The next process was extracting the binary

string of secret message by performing the XOR

operation between the alias seed character bit

stream and the cover bits stream. Before the XOR-

ing process, random number generation should be

conducted to indicate the beginning location of the

XOR-ing process. The result of the XOR-ing

process were sliced into five bits binary codes.

Furthermore, the five bits binary codes were

converted into character. The overview of the

message decoding process is shown in Fig. 8.

Fig. 8. Message decoding process

3. 8. Extracting the Alias Seed Characters

The objective of this algorithm was to extract

the alias seed characters from the email alias

received by the receiver. The extracting process

consists of the following steps.

1. Determining the rule for extracting the alias

seed characters using equation (2).

2. If the result of equation 2 is even, then

extract the alias seed characters based on

rules A, where rule A is as follows:

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 119

1) Set index of the email alias with 𝑖 =
 0, set index of the alias seed with 𝑗 =
0. In this case, the 𝑖𝑡ℎ character of

email alias is represented by

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑖] and the

𝑗𝑡ℎ character of alias seed is

represented by

𝑎𝑙𝑖𝑎𝑠_𝑠𝑒𝑒𝑑_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑗].
2) 𝐸𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑖] is stored

in 𝑎𝑙𝑖𝑎𝑠_𝑠𝑒𝑒𝑑_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑗], then

increment 𝑗 by 1.

3) If 𝑖 = 0, then check whether

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖] is a

special character or not.

- If 𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖] is a

special character, then check the

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖 + 1].
If it is a special character, then

increment 𝑖 by 1, otherwise

increment 𝑖 by 2.

- If 𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖] is

not a special character, then check

the 𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖 +
2]. If it’s a special character, then

increment 𝑖 by 2, otherwise

increment 𝑖 by 3.

If 𝑖! = 0 and

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖 + 1] is a

special character then increment 𝑖 by

1, otherwise increment 𝑖 by 2.

4) Repeat steps 2) and 3) until the last

character of the email alias.

3. If the result of equation 2 is odd, then

extract the alias seed characters based on

rules B, where rule B is as follows:

1) Set index of the email alias with 𝑖 =
 0, set index of the alias seed with 𝑗 =
0

2) If 𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 [𝑖] is a

special character, then store

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑖] into

𝑎𝑙𝑖𝑎𝑠_𝑠𝑒𝑒𝑑_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑗], increment

𝑗 by 1 and increment 𝑖 by 1. If it is not

a special character, then check if 𝑖 =
0, then store

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑖 + 1] into

𝑎𝑙𝑖𝑎𝑠_𝑠𝑒𝑒𝑑_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑗], increment

𝑗 by 1 and increment 𝑖 by 2. Otherwise

if 𝑖! = 0, then store

𝑒𝑚𝑎𝑖𝑙_𝑎𝑙𝑖𝑎𝑠_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑖] into

𝑎𝑙𝑖𝑎𝑠_𝑠𝑒𝑒𝑑_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟[𝑗], then

increment 𝑗 by 1 and increment 𝑖 by 2.

3) Repeating step 2) until the last

character of the email alias

The algorithm for extracting the alias seed

characters is shown in Fig. 9.

Fig. 9. Algorithm for extracting the alias seed characters

Algorithm 5 : Extracting the email
alias
Input : email alias, time, cover
bit stream, mapping table
Output : alias seed character
r <- len(mp) ^ t mod len(cb)
if r % 2 == 0 then
 i 0; j 0; as []
 while i < len(ea) do
 as[j] ea[i]; j j+1
 if i==0 then
 if ea[i] is sc then
 if ea[i+1] is sc then
 i i+1
 else
 i i+2
 endif
 else
 if ea[i+2] is sc then
 i i+2
 else
 i i+3
 endif
 endif
 else
 if ea[i+1] is sc then
 i i+1
 else
 i i+2
 endif
 endif
 endwhile
else
 i 0; j 0; as []
 while i < len(ea) do
 if ea[i] is sc then
 as[j]ea[i]; jj + 1; ii + 1
 else
 if i==0 then
 as[j]ea[i+1];jj + 1;ii+ 2
 else
 as[j]ea[i];jj + 1; ii + 2
 endif
 endif
 endwhile
endif
return as
note :

1. t : time the email was
sent;
2. cb : cover bit stream;
3. as : alias_seed_character;
4. ea : email_alias_character;
5. v: vowel; c : consonant;
6. mp : mapping table;
7. sc : special character

120 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

3. 9. Converting the Alias Seed Characters and

the Cover into Five Bits String

The objective of this algorithm was to convert

the alias seed characters and the cover into five bits

binary code. The conversion process consists of the

following steps.

1. Each character of the alias seed is converted

into five bits binary code based on Table 2.

2. Concatenating all five bits binary code of

the alias seed characters to represent the

alias seed characters bit stream.

3. Step 1 and 2 are also applied to the cover.

The output of this algorithm was the cover bits

stream and the alias seed character bit stream. The

algorithm for converting the character and the

cover into five bits binary code is shown in Fig. 10.

Fig. 10. Algorithm for converting the alias seed characters and
the cover into five bits string

3. 10. Extracting the Secret Message

The objective of the algorithm was to extract

the secret message using the XOR operation. The

process for extracting the secret message consists

of the following steps.

1. Counting the length of the embedded secret

message bit and cover bits stream.

2. Determining the beginning location of the

XOR process using equation (3)

𝑖 = 𝑙𝑢 𝑚𝑜𝑑 (𝑥 − 𝑧) (3)

where 𝑖 is the starting location of the XOR

process, 𝑙 is the number of character on the

mapping table, 𝑢 is the time when the email

was sent, 𝑥 is the length of the cover bit

stream, and 𝑧 is the length of the alias seed

character bit stream. If 𝑖 + 𝑧 > 𝑥 then the

XOR process for the remainder is started

from the first character of the cover.

3. XOR the embedded secret message bits

with the cover bits starting from the location

𝑖 that is obtained from step 2.

The output of this algorithm was the secret

message bits stream. The algorithm for extracting

the secret message is shown in Fig. 11.

Fig. 11. Algorithm for extracting the secret message

3. 11. Converting the Secret Message Bits

Stream into Characters

The objective of this algorithm was to convert

the secret message bits stream into characters. The

process for converting the secret message bits

stream into characters consists of the following

steps:

1. Slicing the secret message bits stream into a

group of five bits.

2. Each group is converted into a character

based on Table 2.

 The algorithm for converting the secret

message bits stream into character is shown in Fig.

12.

Algorithm 6: Converting the alias
seed characters and cover into five
bits string
Input : alias seed character, email
address(cover)
Output : alias seed bit stream,
cover bit stream

bas  empty string
for i  0 to len(asc) do
 basbas||conv_char2bin(asc[i])
endfor

bc  empty string
for i  0 to len(cover) do
 bc bc || conv_char2bin(cover[i])
endfor
return bas, bc

note :

1. bas : alias seed bit stream
2. asc : alias_seed_character
3. bc: cover bit stream

Algorithm 7: Extracting the secret
message
Input : time, mapping_table, cover
bit stream and alias seed bit stream
Output : secret message bit stream

ilen(mp)^t mod(len(bc) – len(bas))
cstr  subString(bc, i, len(bc))
smb  cstr XOR bas
return smb

note :

1. i : starting location of XOR
process

2. t : time the email was sent
3. bc : cover bit stream
4. bas : alias seed bit stream
5. cstr : cover substring
6. mp : mapping table
7. smb : secret message bit

stream

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 121

Fig. 12. Algorithm for converting the secret message bits stream

into character

3. 12. Implementation of Message Decoding

Suppose the email alias was

‘boip@amiwaqux’, the time when the email was

sent is 01:26, the cover was

‘hasmawati@telkomuniversity.ac.id’ then, for

extracting the secret message from alias and email

address, the following process should be

conducted.

1. Extracting the alias seed characters from the

email alias using Algorithm 5. Since the

result of modular function using equation 2

was even, then the extracting process is

performed based on rules A. The alias seed

characters obtained was bp@mwqx.

2. Converting ‘bp@mwqx’ into five bits

binary code based on Table 2, the five

binary code of each character are b =

00010, p = 10000, @ = 11110, m = 01101,

w = 10111, q = 10001, x = 11000.

Furthermore, all five bits code should be

concatenated to obtain the alias seed

character bit stream which was

00010100001111001101101111000111000.

3. Step 2 was also applied on the cover to

obtain the cover bits stream which is

‘0100000001100110110100001101110000

11010001001111101010000101011000101

10111101101101010111001001101100010

11001010011010011010011'001111000000

100011111000100100100’ with a length of

160.

4. Determining the starting location of the

XOR process by calculating 𝑖 =
𝑙𝑢 𝑚𝑜𝑑 (𝑥 − 𝑧) where 𝑖 is the starting

location of the XOR-ing process, 𝑙 is the

number of character on the mapping table,

𝑢 is the time when the email was sent, 𝑥 is

the length of the cover bit stream, and 𝑧 is

the length of the alias seed character bit

stream. The result is 57.

5. Extracting the embedded secret message by

performing the XOR operation between the

alias seed character bit stream

‘0001010000111100110110111100011100

0’ with the cover bits stream

‘0100000001100110110100001101110000

11010001001111101010000101011000101

10111101101101010111001001101100010

11001010011010011010011001111000000

100011111000100100100’ starting from bit

100. The result of the XOR process is

‘1011100001100111000000001001000000

1’ which is called secret message bit stream.

6. Slicing

‘1011100001100111000000001001000000

1’ into groups of five bits where the result is

‘10111’, ‘00001’, ‘10011’, ‘10000’,

‘00001’, ‘00100’, ‘00001’.

7. Converting each five bits code into

character based on Table 2. The character

obtained are 10111=’w’, 00001=’a’,

10011=’s’, 10000=’p’, 00001=’a’,

00100=’d’, 00001=’a’. Finally, ‘waspada’ is

obtained as the result.

4. Experiment and Analysis

To evaluate the embedding capacity of the

proposed and the Desoky’s methods, two

experiments were conducted. The first experiment

was to calculate the number of covers used for

embedding the message, and the second was to

calculate the embedding capacity of the proposed

and Desoky’s method. Both of experiments were

conducted using 30 covers and 30 messages of

various lengths.

For conducting the experiment using Desoky’s

method the secret message were divided into two

sentences. The first sentence was embedded in the

first letter of the email address. The second

sentence was embedded in the numeric characters

of the email address. The cover used was an email

address taken from a valid email address databases

which is about 5,307 email addresses.

4.1. Evaluating Cover's Size For Embedding

Messages

The objective of the experiment for evaluating

the cover's size for embedding messages was to

evaluate the number of covers required for

embedding a message using the previous and the

Algorithm 8: Converting the secret
message bit stream into character
Input: secret message bit stream
Output: secret message

sb  slice smb into five bit
sm  empty string

for i  0 to len(sb) do
 sm  sm || conv_bin2char(sb[i])
endfor
return sm

note :

1. sb: sliced bit

2. smb : secret message bit

3. sm : secret message

mailto:hasmawati@telkomuniversity.ac.id

122 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

proposed method. The experiment result shows

that to embed a message with a length of 𝑛, using

the previous method required 5% of email

addresses larger than the proposed method.

This condition was occurred because using

Desoky's method, one email address could be

embedded with a maximum of 11 bits of the secret

message (by assuming that the character

represented by 4 bits on the message were matched

with the first character of the email address, such

that these 4 bits could be embedded into the first

character of the email address, and the numeric

character represented by 7 bits on the message

were matched with the three numeric characters of

the email address such that these 7 bits could be

embedded into the numeric character of the email

address). Meanwhile, using the proposed method

one email address could be embedded with a

minimum of 16 bits (by assuming that one email

address could be embedded with a minimum of two

characters or 16 bits). The result of the experiment

for evaluating the cover's size for embedding

messages is shown in Table 3.

4.2. Evaluating of the Embedding Capacity

The objective of the experiment for evaluating

the embedding capacity was to evaluate the number

of secret message characters that can be embedded

into the cover using Desoky’s method and the

proposed method. In this case, the cover used for

both methods was similar. The experiment was

conducted using 30 covers and 30 messages of

various lengths. Since some covers could be

embedded with a similar length of the secret

message, then these covers were classified into 10

classes.

The result of the experiment shows that the

number of characters that can be embedded using

the proposed method was larger than using

Desoky’s method. In general, the proposed method

could embed messages 89% larger than the

Desoky’s method.

Since the embedding capacity depended on the

maximum number of bits that could be embedded

into a cover divided by the number of bits of the

cover, then the maximum capacity was calculated

using equation 4.

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
(𝑛)

𝑘
𝑥 100% (4)

where 𝑛 is the maximum number of bits that can be

embedded into the cover, and 𝑘 is the number of

bits of the cover which can be calculated using

equation (5).

𝑘 = ∑ 𝑐𝑖
𝑛
𝑖=1 (5)

Using Desoky’s method, one email address

could be maximum embedded by 11 bits of

message, then the maximum embedding capacity

was 11 bits, while using the proposed method, one

message could be maximum embedded by 𝑘 bits.

Thus, the embedding capacity using Desoky’s

method was 11/𝑘 % while using the proposed

method is 100%.

Since the number of characters in one email

address was larger than or equal to two characters,

then using the proposed method, the minimum

capacity was (10/𝑘) ∗ 100%. Meanwhile, using

Desoky’s method, the minimum capacity was (
4

𝑘
) ∗

100%. Thus, it was shown that the maximum

embedding capacity when using Desoky’s method

was less than the minimum embedding capacity

when using the proposed method. Therefore, it can

be concluded that the embedding capacity using the

proposed method was larger than Desoky’s

method.

The results of the experiment for evaluating the

embedding capacity is shown in Fig. 13.

(a)

(b)

Fig. 13. Comparison of the embedding capacity using (a) the
proposed and (b) desoky’s method

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 123

Table 3. Comparison of cover used using the proposed and desoky’s method

NO (1) (2) (3) (4) (5) (6) (7)

1 rahasia 7 56 h3ndra_gun82@yahoo.com;ca94110@gmail.com;gadismod

e@yahoo.com;baektex@hanmail.net;gaojian@fortune-

oil.com.cn;ibon_02@yahoo.com;garuda@billmelk.com;bah
anaputra@yahoo.com;halliewong@hotmail.com;dada.sandr

amargaretha@gmail.com;gede_mahatma@yahoo.com;j.char

leston@chello.nl;general@btcocoa.com;baligm@cti_usa.co
m;

bahanapu

tra@yaho

o.com

14 19

2 telpon

bu si

12 96 h3ndra_gun82@yahoo.com;e.dolman@quicknet.nl;gadismo

de@yahoo.com;fahrulsani@gmail.com;gaojian@fortune-
oil.com.cn;maetrading@bdg.centrin.net.id;halliewong@hot

mail.com;a183rt_santoso@yahoo.com;garuda@billmelk.co

m;pangestutis@yahoo.com;gede_mahatma@yahoo.com;oha
yotravel@hotmail.com;

aldhy16@yahoo.com;satomai24gianyar@hotmail.com;sson

gsam78@hanmail.net;h3ndra_gun82@yahoo.com;dlucs_pg
3@yahoo.com;asep.setiawan77@yahoo.com;ahalim82@gm

ail.com;alfebad53@yahoo.com;adi_s88@hotmail.com;be_to

urs1@yahoo.com;

e.dolman

@quickn
et.nl

30 20

3 ubah

hak

akses
service

22 17

6

h3ndra_gun82@yahoo.com;fahrulsani@gmail.com;gadismo

de@yahoo.com;ca94110@gmail.com;gaojian@fortune-

oil.com.cn;baektex@hanmail.net;garuda@billmelk.com;ibo
n_02@yahoo.com;camat169@gmail.com;a183rt_santoso@

yahoo.com;gede_mahatma@yahoo.com;idabsa@yahoo.com

;general@btcocoa.com;bahanaputra@yahoo.com;general@
mincom.co.id;l.yamin@cgiar.org;,u-

aldhy16@yahoo.com;satomai24gianyar@hotmail.com;azzy
45@gmail.com;achmadi55@gmail.com;kenichi.megumi27

@yahoo.com;ferimon21@gmail.com;afekn102@oct.zaq.ne.

jp;dannyang32@yahoo.com;basith57@yahoo.com;rosyeni8
9@yahoo.com;andrayani46@gmail.com;ahmad.syafei39@y

ahoo.co.id;rukiman51@gmail.com;haruru37@nifty.com;pla

met70@naver.com;happy_tour101@yahoo.com

baektex

@hanmai

l.net;gene
ral@min

com.co.i

d

50 40

4 twonig

ht@eig

htAM
use my

secret

key

34 27

2

h3ndra_gun82@yahoo.com;e.dolman@quicknet.nl;halliewo

ng@hotmail.com;handhee@yahoo.com;gadismode@yahoo.

com;pangestutis@yahoo.com;gaojian@fortune-
oil.com.cn;ohayotravel@hotmail.com;garuda@billmelk.co

m;j.charleston@chello.nl;gede_mahatma@yahoo.com;handj

asa@ymail.com;general@btcocoa.com;ibon_02@yahoo.co

m;hans.bouma@casema.nl;eddy-

syam@exxonmobil.com;edy_noor@yahoo.com;a183rt_sant

oso@yahoo.com;general@mincom.co.id;fahrulsani@gmail.
com;gleanos@dnet.net.id;j.elisabrth0204@yahoo.com;glori

a@bumi.net.id;happyizzim@hanmail.net;gnp_b@hotmail.c

om;idabsa@yahoo.com;harpindojaya@yahoo.com;ehud_my
er@yahoo.com;eis_234@yahoo.com;baektex@hanmail.net;

ellysthamrin@gmail.com;nadirautama105@yahoo.com;

aldhy16@yahoo.com;yul29@menlh.go.id;andrayani46@gm
ail.com;aanfarhan54@yahoo.com;aidanf41@hotmail.com;b

e_tours1@yahoo.com;bennywijaya90@gmail.com;chongwe

i121@gmail.com;dh4nie16@yahoo.com;jongjava_lk28@ya
hoo.com;halim108@yahoo.com;adisap86@yahoo.com;keni

chi.megumi27@yahoo.com;wengwai73@yahoo.com.sg;dej

e74@gmail.com;bjr116@gmail.com;doddyputra16@gmail.c
om;amyhendo26@hotmail.com;pergas108@hotmail.com;lia

cute87@yahoo.com;afrini9@yahoo.com;

handjasa

@ymail.c

om;baekt
ex@han

mail.net

76 37

124 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

4.3. Imperceptibility

Imperceptibility is calculated/identified as the

probability for an attacker to detect the existence of

a hidden message in the cover message. The

hidden message should be invisible and should not

raise the suspicions of human vision systems.

Practically, imperceptibility was evaluated by

analyzing the degree of imperceptibility. The

degree of imperceptibility was obtained by

comparing the cover message and the cover

message after a message was embedded into it. The

difference between those two messages was

calculated using Jarro distance [14,15,16] (see

equation 6).

𝑑𝑗 = {
0 𝑖𝑓 𝑚 = 0
1

3
(

𝑚

|𝑠1|
+

𝑚

|𝑠2|
+

𝑚−𝑡

𝑚
 𝑒𝑙𝑠𝑒

 (6)

where 𝑚 is the number of matching characters

between those two messages, 𝑠1 is the length of the

cover message, 𝑠2 is the length of the cover

message after the embedding process, and 𝑡 is half

the number of transpositions.
Since either Desoky’s and the proposed method

was a noiseless steganography, then there was no

difference between the cover message and the

cover after embedding process, or in other words,

𝑚 = 𝑠1 = 𝑠2, 𝑎𝑛𝑑 𝑡 = 0 (because of no

transpositions). Thus, in this case, 𝑑 was 0.

4.4. Robustness

During the transmission process, multiple

attacks may occur on the stego-text, such as text

manipulation and deletion parts of the stego-text,

by attackers. A robust steganography method

should have the capability to make it difficult for

attackers to change or destroy a hidden message.

This capability could be measured based on the

probability of how much proportion of the

embedded message that had been lost from the

stego text, 𝑃(𝐿). Suppose the number of embedded

locations in the cover message was 𝑁𝐿 and the

length of the cover message was 𝑇𝐶. Thus, the

𝑃(𝐿) = 𝑁𝐿 / 𝑇𝐶 and the 𝑃(𝐷𝑅) can be calculated

as follows [14,15,16]:

𝑃(𝐷𝑅𝐻𝑀) = [1 − 𝑃(𝐿)]; 1 < 𝑁𝐿 < 𝑇𝐶, 𝑁𝐿 ∈ 𝑁, 𝑇𝐶 ∈ 𝑁 (7)

Since using the proposed method all locations

of the cover message could be embedded, then if

all locations were used, then the loosing probability

could be maximum 1. However, since the lower

losing hidden message probability leads to a more

robust steganography methods, then not all

locations could be embedded. Suppose, 11 bits

characters (11 bits is the maximum embedding

capacity using Desoky’s method) was embedded

into the cover message using Desoky’s method (7

bits were embedded into 3 number characters and

4 bits were embedded into one character), then the

probability of losing the hidden message

𝑃(𝐿)𝐷𝑒𝑠𝑜𝑘𝑦 = 4/𝑇𝐶, while using the proposed

method 𝑃(𝐿)𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 3/𝑇𝐶 (since one character

could be embedded by 5 bits, then for embedding

11 bits, 3 characters were necessary). Thus, the

loosing probability for embedding 11 bits using the

proposed method was less than the loosing

probability when using Desoky’s method. Since

𝑃(𝐿)𝐷𝑒𝑠𝑜𝑘𝑦 > 𝑃(𝐿)𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑, then

𝑃(𝐷𝑅)𝐻𝑀−𝐷𝑒𝑠𝑜𝑘𝑦 < 𝑃(𝐷𝑅)𝐻𝑀−𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑 or

in other words the proposed method was more

robust than Desoky’s one.

4.5. Security Analysis

Since in Desoky's method the security only

depends on the map used for transforming the

character into the binary code, then the security

evaluation was conducted based on the probability

of obtaining the map. Suppose there are 𝑛

characters that had to be map to 𝑛 codes by

assuming that each character had to be map to a

unique code, then there were 𝑛! possible maps.

Thus, if an attacker tried to attack Desoky's

method, the probability for obtaining the correct

map was
1

𝑛!
. In the case of the proposed method,

instead of only guessing the map, the alias guessing

was also necessary. Since there were two possible

alias types (rules A and B), then the probability for

obtaining the correct map of the proposed method

was
1

𝑛!∗2
 .

Instead of evaluating the security based on

statistics, we also evaluated the security based on

the security model [17]. Since the hidden message
(𝐸) was not determined by the stego-text (𝑆), then

𝐻(𝐸|𝑆) = 𝐻(𝐸) (where 𝐻(𝐸) is the uncertainty of

E). Suppose the attacker knew 𝑆 and 𝐶𝑠 (source of

cover), but the attacker could not obtain 𝐸, because

the stego-text was noiseless which means there was

no difference between the stego-text and the cover.

Thus, the uncertainty about 𝐸 if the knowledge of

𝐶𝑠 and 𝑆 was obtain, 𝐻(𝐸|(𝑆, 𝐶𝑠)) = 𝐻(𝐸) or it

can be concluded that 𝐻(𝐸|(𝑆, 𝐶𝑠)) = 𝐻(𝐸|𝑆) =

 𝐻(𝐸).
The proposed method used secret XOR starting

location which was depended on the number of

codes in the map, which was assigned as the secret

𝐾. Furthermore, based on [17], the uncertainty

Hasmawati and A.M. Barmawi, Increasing the Capacity of Headstega Based on Bitwise Operation 125

about 𝐾 if the knowledge of 𝑆 and 𝐶𝑠 is obtain,

𝐻(𝐾|(𝑆, 𝐶𝑠) = 𝐻(𝐸) + 𝐻(𝐾|𝐸).

The uncertainty about 𝐾 if the knowledge of 𝐸 was

obtain, 𝐻(𝐾|𝐸) = 𝐻(𝐾). Since 𝐾 was not

determined by 𝐸, then 𝐻(𝐾|(𝑆, 𝐶𝑠) = 𝐻(𝐸) +
 𝐻(𝐾) which was greater than 𝐻(𝐸). Since,

𝐻(𝐸|(𝑆, 𝐶𝑠)) = 𝐻(𝐸|𝑆) = 𝐻(𝐸) and

𝐻(𝐾|(𝑆, 𝐶𝑠) ≥ 𝐻(𝐸) , then it was proven that the

proposed method was information theoritically

secure.

4.6. Time Complexity

Since our proposed method used a function to

generate the secret XOR starting location based on

modular exponentiation, then the time complexity

of our proposed method is O(2n), while Desoky’s

method is O(n).

5. Conclusion

The weakness of Headstega [12] is that it has

less embedding capacity and it raises adversary’s

suspicion. Based on the experiment result, it is

shown that the proposed method can improve the

embedding capacity while preserving the security

of Headstega by introducing the bitwise operation

process. The result shows that the capacity of the

proposed method is 89% larger than the previous

method. Moreover, for embedding similar

messages the previous method required 5%

number of email address larger than using the

proposed method. For reducing the adversary’s

suspicion, the existing email address is used

instead of generating a new email address.

The imperceptibility of the proposed method is

similar to the Desoky’s one, while the robustness

of the proposed method is better than Desoky’s

one. Furthermore, the security of the proposed

method is better than Desoky’s method.

References

[1] M. E. Whitman, and H. J. Mattord, (2011).

“Introduction to Information Security”.

Principles of Information Security. p.1-38.

2011.

[2] W. Stallings, (2011). “Cryptography and

Network Security”. Pearson Education,. p.57.

2011.

[3] M. Anwar, M. Sarosa, R. Rohadi, “Audio

Steganography Using Lifting Wavelet

Transform and Dynamic Key”. 2019

International Conference of Artificial

Intelligence and Information Technology

(ICAIIT). 2019

[4] F. H. Rabevohitra, and Y. Li, "Text Cover

Steganography Using Font Color of the

Invisible Characters and Optimized Primary

Color-intensities". 2019 IEEE 19th

International Conference on Communication

Technology. 2019

[5] R. Lockwood and K. Curran, “Text based

steganography,” int J. Information Privacy,

Security and Integrity, Vol. 3, No. 2, pp.134-

153. 2017.

[6] G. Gustaman and A. M. Barmawi, "Increasing

the Capacity of Listega Based on Syllable

Pattern Using Multicolumn and Bigram

Mapping", Conference: 2018 IEEE World

Symposium on Communication Engineering

(WSCE).2018.

[7] O. Elharrouss, N. Almaadeed, S. Al-Maadeed,

“An image steganography approach based on

k-least significant bits (k-LSB)”. 2020 IEEE

International Conference on Informatics, IoT,

and Enabling Technologies (ICIoT). 2020.

[8] A. Darbani, M. M. AlyanNezhadi, and M.

Forghani, “A New Steganography Method for

Embedding Message in JPEG Images”. 2019

IEEE 5th International Conference on

Knowledge-Based Engineering and

Innovation (KBEI). 2019.

[9] Y. Zhang, M. Zhang, K. Niu, J. Liu, “Video

Steganography Algorithm Based on Trailing

Coefficients”. 2015 International Conference

on Intelligent Networking and Collaborative

Systems. 2015.

[10] S. Teotia, and P. Srivastava, "Enhancing Audio

and Video Steganography Technique Using

Hybrid Algorithm". International Conference

on Communication and Signal Processing,

April 3-5, 2018.

[11] A. Desoky, “Noiseless steganography: The

key to covert communications”. CRC Press,

2012.

[12] A. Desoky, “Headstega: e-mail-headers-based

steganography methodology”. International

Journal Electronic Security and Digital

Forensics, 3(4):289310, 2010.

[13] Schneier, Bruce. “Applied Cryptography.

Second edition”. John Wiley & Sons. p.535.

1996.

[14] M. T. Ahvanooey, Q. Li, J. Hou, H. D.

Mazraeh, and J. Zhang, “AITSteg: An

Innovative Text Steganography Technique for

Hidden Transmission of Text Message via

Social Media”, IEEE Access, Vol.6, pp.

65981-65995, 2018.

[15] M. T. Ahvanooey, Q. Li , J. Hou, A. R. Rajput

and C. Yini, “Modern Text Hiding, Text

Steganalysis, and Applications: A

126 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 14,

 issue 2, June 2021

Comparative Analysis, Entropy”, Vol.21, pp.

350-381, 2019.

[16] M. T. Ahvanooey, Q. Li , H. J. Shim, and Y.

Huang, “A Comparative Analysis of

Information Hiding Techniques for Copyright

Protection of Text Document’’, Security and

Communication Networks, Vol. 2018, pp.1-

22, 2018.

[17] J. Zöllner, H. Federrath, H. Klimant, A.

Pfitzmann, R. Piotraschke, A. Westfeld, G.

Wicke, G. Wolf, “Modeling the security of

steganographic systems”, International

Workshop on Information Hiding, pp 344-354,

1998.

