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Abstract 

 
Hate speech, as public expression of hatred or offensive discourse targeting race, religion, gender, or 
sexual orientation, is widespread on social media. This study assesses BERT-based models for multi-
label hate speech detection, emphasizing how text length impacts model performance. Models tested 
include BERT, BERT-CNN, BERT-LSTM, BERT-BiLSTM, and BERT with two LSTM layers. Overall, 
BERT-BiLSTM achieved the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (82.00%) and best performance on longer texts 
(83.20% 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) with high 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠, highlighting its ability to capture nuanced 
context. BERT-CNN excelled in shorter texts, achieving the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (79.80%) and an 
𝐹1	𝑠𝑐𝑜𝑟𝑒 of 79.10%, indicating its effectiveness in extracting features in brief content. BERT-LSTM 
showed balanced 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 across text lengths, while BERT-BiLSTM, although high in 
r𝑒𝑐𝑎𝑙𝑙, had slightly lower 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 on short texts due to its reliance on broader context. These results 
highlight the importance of model selection based on text characteristics: BERT-BiLSTM is ideal for 
nuanced analysis in longer texts, while BERT-CNN better captures key features in shorter content. 
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1. Introduction 

 
Hate speech is a public expression that incites 

hatred or abusive talk against specific groups and 
individuals, typically based on race, religion, 
gender or sexual orientation [1]. Hate Speech is 
very common and viral among social media 
platforms, especially tweeting platform (X) 
because of anonymity and virality of tweets [2]. 
Content of this nature can have adverse societal 
effects such as discrimination and social strife. 
Detection of hate speech is an area that has gained 
traction recently, especially in terms of election 
contexts where inflammatory language can quickly 
escalate.  

One of the use cases of deep learning for hate 
speech detection like CNN and LSTM sentiment 
analysis models in the 2024 DPR election show 
better performance 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 with CNN mode[3]. 
The results showed that oversampling could 
enhance model performance, and the CNN 
consistently outperformed LSTM for Word2Vec 
features with 80:20 data ratio (93.27% 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). 

Since hate speech classification is cast as a 
binary classification, several work have 
incorporated deep learning model, such as 
IndoBERT with BiLSTM for multi-label hate 
speech classification in Indonesian. Previous 
studies show that BERT-BiLSTM can achieve high 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 in variety of hate speech subtypes using 
contextual understanding in the datasets [4]. Such 
an approach enables a more granular classification, 
which is important for complex language patterns 
reflected in either form of hate speech. 

While binary classification is first step in 
understanding why people hate speech, multiclass 
classification adds more richer flavour by 
classifying hate content into subtypes such as race 
or religion-based and so on. Even more than that, 
distinguishing this genre enables models to 
understand even the difference between subtle 
contexts which is not captured in simple 
classifications therefore gaining model robustness 
[5]. 

In this paper, we analyze BERT-based models 
for hate speech detection on Twitter. The research 
is organized into sections covering related studies, 
the dataset and methods, results, and conclusions. 
This study aims to determine which BERT variant 
performs best for texts of varying lengths, 
contributing insights for model selection based on 
text characteristics.  

 
2. Literature 

 
As mentioned earlier, there have been several 

research studies utilizing various strategies and 
techniques for detecting and classifying hate 
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speech in text data. These studies generously 
provide their used datasets for public use. 
 

2.1 Model Characteristics 
 
Research domains have studied Hate speech 

detection with different models, especially BERT + 
SVM, KNN, RF andDT. In the example given by, 
researchers found SVM with BERT embeddings 
(which achieved 82% 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 and 90% 
𝑭𝟏	𝒔𝒄𝒐𝒓𝒆) performed the best out of the other 
algorithms they tested on a dataset of 3,323 labeled 
entries. In a second study, they showed a Micro 
𝑭𝟏	𝒔𝒄𝒐𝒓𝒆 of 0.6029 using CNN with stacking 
Conv1D layers, but their test data performance 
suffered from overfitting [6]. Several models have 
been developed in this domain including toxic 
comment classification model (which uses LSTM 
model and BiLSTM for multi-label classification) 
with recommended data balancing to reduce data 
imbalance problem, hierarchical algorithms to 
improve efficiency keystroke identification etc [6-
12]. 

This study builds on these efforts by combining 
advanced pre-trained models such as BERT with 
other deep learning architectures, with a focus on 
leveraging context-specific features to address 
nuanced forms of hate speech detection. 
 

2.2 Transfer Learning 
 

Although deep learning based on NN combined 
with traditional word embedding techniques 
performs reasonably well, it is generally not as 
efficient as transformers. Over the last few 
decades, multiple methodologies gradually 
refocused from RNN to self-attention and 
transformers for most tasks in NLP. Then in 2018, 
BERT conditioned both left and right contexts to 
train deep bidirectional text representations by 
adapting the transformer. Chiril et al. propose a 
multitask hate speech detection approach based on 
BERT that produced superior results over 
dedicated systems trained on single-topic general 
datasets [13]. Additionally, Kovacs et al. 
knowledgeed a fasttext and CNN based model with 
roBERTa on top, getting an 𝐹1	𝑠𝑐𝑜𝑟𝑒 of 63% [14]. 
Malik et al. However, they discovered that 14 
shallow/deep classifiers based on word 
representation selection performed best when 
combining BERT, ELECTRA and ALBERT with 
Neural Network. They reached a score of macro 
𝐹1	𝑠𝑐𝑜𝑟𝑒 of 76% on the Davidson dataset. 
Mozafari et al. utilized BERT-based methods 
(𝐵𝐸𝑅𝑇 + 𝐵𝑖𝐿𝑆𝑇𝑀 and 𝐵𝐸𝑅𝑇 + 𝐶𝑁𝑁) for hate 
speech detection, achieving significant 
performance [14]. 
 

2.3 Ensemble Learning: Machine Learning 
Approaches 
 

Hate speech detection also utilizes ensemble 
learning which combines multiple models to 
enhance performance. The combined LSTM and 
gradient boosted trees produced a 93% 𝐹1	𝑠𝑐𝑜𝑟𝑒, 
while Plaza-del et al. applied a vote ensemble of 
SVM, LR and DT obtaining 44% as an 𝐹1	𝑠𝑐𝑜𝑟𝑒 
[15]. In other studies, stacking classifiers using 
different models have been used to attain high 
𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠 97% [16]. This work differs in the use 
of ensemble which combines BERT with other 
deep learning models to enhance hate speech 
detection from Twitter and focuses on hate speech 
classification based on their context (race, gender, 
religion). 

 
2.4 Sentence Length 

 
BERT, with its transformer-based architecture, 

demonstrates more optimal performance on long 
texts due to its ability to capture broad contextual 
relationships through the self-attention 
mechanism. However, its performance may decline 
if the text length exceeds the maximum token limit 
(512 tokens) [17]. CNN, on the other hand, excels 
in handling short texts as its convolutional kernels 
efficiently capture local patterns but are limited in 
understanding long-term dependencies [18]. 
LSTM, with its ability to process sequential 
information, is more flexible for varying text 
lengths but tends to face vanishing gradient issues 
on longer texts, which can affect classification 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [19]. BiLSTM extends LSTM's 
capabilities by capturing context in both forward 
and backward directions, making it more optimal 
than LSTM for longer texts, albeit at the cost of 
higher computational resources [20].  

Therefore, selecting a model that aligns with 
the text length is crucial to achieving optimal 
performance in text classification tasks. There are 
still gaps in optimizing models for text 
classification across text lengths. Current 
approaches often struggle to balance computational 
efficiency, especially when dealing with diverse 
datasets with texts of varying lengths. 
 
3. Design Model 

 
3.1 Dataset 

 
The dataset in this study was sourced from 

previous research by [21], which also utilized 
datasets from earlier studies [22-24]. The data was 
filtered and focused on tweets relevant to political 
issues, particularly those connected to the 2024 
Indonesian General Election, to capture patterns of 
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hate speech and abusive language associated with 
political and social issues.  

From the previous research dataset, there were 
18,395 tweets. The tweets were re-filtered to 
remain relevant to the 2024 general election. The 
annotation process was carried out manually by 
three undergraduate annotators with an average age 
of 24 years. In cases of disagreement that arose 
during the annotation process, a consensus-based 
approach was applied to resolve the conflict.  

Based on the distribution of agreement for 3 
annotators, 64% of tweets show full agreement 
where all annotators give the same label (3-0). 
Furthermore, in 28% of tweets, there are two 
annotators who agree to give the same label, while 
one annotator gives a different label (2-1). The 
remaining 8% of tweets show full disagreement 
where each annotator gives a different label (1-1-
1). Obtained on average 𝑛!" 	(𝑛!" − 1) = 4,4 , with 
total 𝑃# 	= 	

$,$
&.(&)*)

	= 	 $,$
,
	≈ 0,733 and 𝑃- = 0,52 

 
To calculate the agreement score using Fleiss' 

Kappa, the formula used is as follows [25]: 
 
                         𝑘 = .!)."

*)."
                            (1) 

where: 
• 𝑃# is the observed proportion of agreement, 
• 𝑃-is the expected proportion of agreement 

based on a random distribution. 
 

The annotation results show that the observed 
proportion of agreement 𝑃# is 0.733 and the 
expected proportion of agreement 𝑃- is 0.52, then 
the Fleiss' Kappa score is 0.444.  

 
Table 1. Kappa interpretation (adapted from [25]). 

𝒌 Interpretation  
< 0 Poor agreement 

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement 

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 1.00 Almost perfect agreement 

 
Based on Table 1, this score indicates moderate 

agreement among annotators. As a result, the final 
dataset consists of 6,539 tweets tagged for hate 
speech and abusive behavior. 

The keywords used include pemilu (election), 
pilpres (presidential election), pilkada (regional 
election), DPR (people's representative council), 
legislatif (legislative), presiden (president), partai 
(party), PDIP (indonesian democratic party of 
struggle), Gerindra (greater indonesia movement 

party), Golkar (golkar party), PKB (national 
awakening party), PKS (prosperous justice party), 
nasdem (national democrat party), caleg 
(legislative candidate), kandidat (candidate), 
kampanye (campaign), debat (debate), hasil pemilu 
(election results), korupsi (corruption), curang 
(fraudulent), pembohong (liar), penipu (cheater), 
munafik (hypocrite), radikal (radical), kadrun 
(derogatory term, "islamic fundamentalist"), 
cebong (derogatory term, "pro-government 
supporter"), buzzer (social media 
influencer/propagandist), fitnah (slander), hoax 
(hoax), Jokowi (joko widodo, president of 
indonesia), Prabowo (prabowo subianto, 
indonesian politician), Anis (anies baswedan, 
indonesian politician), Ganjar (ganjar pranowo, 
indonesian politician), BBM (fuel), and demo 
(protest). 

The main columns are: Tweet (tweeted text), 
HS (Hate Speech binary label), Abusive, and Hate 
Speech types: HS_Individual (Individual 
Targeted), HS_Group (Group Targeted), 
HS_Religion (Religion-Based Hate Speech), 
HS_Race (Race-Based Hate Speech), HS_Physical 
(Physical Attribute-Based Hate Speech), 
HS_Gender (Gender-Based Hate Speech), 
HS_Other (Other Types of Hate Speech). 

According to Ibrohim and Budi, the definitions 
for each category of hate speech are as follows: 
• Religion/Creed: Hate speech based on religion 

(e.g., Islam, Christianity, Catholicism) or 
specific religious organizations/streams, or a 
particular creed. 

• Race/Ethnicity: Hate speech targeting a race 
(defined by physical characteristics like face 
shape, height, skin color, etc.) or ethnicity 
(groups based on shared cultural traditions or 
general citizenship in a geographical area). 

• Physical/Disability: Hate speech based on 
physical differences (e.g., facial features, body 
parts) or disabilities (e.g., autism, blindness, 
deafness), either through insults or referring to 
conditions experienced by those targeted by the 
hate speech. 

• Gender/Sexual Orientation: Hate speech 
directed at gender (male/female) using 
derogatory terms (e.g., gigolo, bitch), or at 
deviant sexual orientations (e.g., 
homosexuality, lesbianism). 

• Other Invective/Slander: Hate speech in the 
form of insults or ridicule using crude language 
or slanders/incitement not related to the four 
groups mentioned above. 
Additionally, hate speech is categorized based 

on its severity: 
• Weak Hate Speech: Involves swearing or 

insults aimed at individuals without incitement 
to open conflict. In Indonesia, this is considered 
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weak hate speech since it is a personal matter. 
If the victim does not report the incident, it is 
not a priority for authorities. 

• Moderate Hate Speech: This category involves 
swearing, blasphemy, stereotyping, or labeling 
directed at groups without incitement to open 
conflict. Although it could spark group 
conflicts, it is classified as moderate hate 
speech because such conflicts are expected to 
be limited to social media. 

• Strong Hate Speech: This type includes 

swearing, slander, blasphemy, stereotyping, or 
labeling aimed at individuals or groups with 
incitement or provocation to cause open 
conflict. It is considered strong hate speech 
because it can lead to widespread conflict or 
real-world physical harm, thus requiring 
immediate attention from authorities. 
Dataset also categorizes tweets to long text 

(more than 100 character) or short text. These 
columns assist in examining what kind of hate 
speech is directed at whom on social media. 

Table 2. Dataset sample (from [21]). 
 

Tweet HS Abusive HS_ 
Individual 

HS_ 
Group 

HS_ 
Religion 

HS_
Race 

HS_ 
Physical 

HS_ 
Gender 

HS_ 
Other 

Banci kaleng malu 
ngga bisa jawab 

pertanyaan kami dari 
kemaren nyungsep lu 

(transvestite 
embarrassed that can't 
answer our question 

since yesterday you've 
been stuck) 

1 1 1 0 0 0 0 1 0 

Kalo belajar ekonomi 
harusnya jago 

memprivatisasi hati 
orang aduh ironi 

(If study economics 
have to be good at 
privatizing people's 

hearts what an irony) 

0 0 0 0 0 0 0 0 0 

Aktor huru hara 
prabowo sih pengen 

lengserin 
pemerintahan jokowi 
(Riot actor Prabowo 
wants to overthrow 

Jokowi's government) 

1 0 1 0 0 0 0 0 1 

 
3.2 Data Prepocessing 

 
The dataset is split in three types:Original data, 

Long Text (greater than 100 character, 2,066 rows) 
and Short Text (100 characters or less, 4,472 
rows). For each category, we tested four models 
—BERT, BERT-LSTM, BERT-CNN, and BERT-
BiLSTM—and evaluated them in terms of 
accuracy, precision, recall	and	F1	score.  

The preprocessing begins with text 
normalization using a dictionary 
(kamusnormalisasi.csv) this is replacing words 
with normalization forms. Then, using BERT-
base-multilingual-cased, the BERT tokenizer is 
used to do the tokenization. These tweets are then 
tokenized and attention masks are created to make 
them ready for model input, using train_test_split 
90% of the records are put into training data and 
the remainder 10% into test data will be used as 

input to the TensorFlow processing function. 
 
3.3 Data Analysis Platform and Evaluation 

Metrics 
 

The implemented models were trained using 
various fine-tuning strategies (batch size 16 for 5 
𝑒𝑝𝑜𝑐ℎ𝑠) on Colab. A custom optimizer was 
developed with a learning rate of 2e-5, and 
experimentation was conducted with both the 
Adam optimizer and Sparse Categorical Cross-
entropy loss function. To effectively harness 
features from each label, weights were introduced  
during the training phase. Consequently, 
classification performance was evaluated using 
metrics such as accuracy, precision, recall, and 
F1	score.
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Table 3. Short text sample (from [21]). 
 

Tweet HS Abusive HS_ 
Individual 

HS_ 
Group 

HS_ 
Religion 

HS_ 
Race 

HS_ 
Physical 

HS_ 
Gender 

HS 
_Other 

Lengserin jokowi 
bangsat 

(Overthrow the bastard 
Jokowi) 

1 1 1 0 0 0 0 0 1 

Proyek korupsi rezim 
susilo bambang 

Yudhoyono 
(Corruption projects of 

the Susilo Bambang 
Yudhoyono regime) 

1 0 1 0 0 0 0 0 1 

Ada kecebong bang dia 
ngerasa paling bener 

(There's a tadpole bro he 
feels he's the most 

correct) 

1 1 1 0 0 0 0 0 1 

  
Table 4. Normalization result example. 
Before After 

banci kaleng malu ngga 
bisa jawab pertanyaan 

kami dari kemaren 
nyungsep lu 

(transvestite embarrassed 
that can't answer our 

question since yesterday 
you've been stuck) 

banci kaleng malu tidak 
bisa jawab pertanyaan 

kami dari kemarin 
nyungsep kamu 

(you are a shame you can 
not answer our questions 
from yesterday you have 

fallen) 
 
3.4 Modelling 

 
When trained with a large amount of data [3], 

BERT is expected to exhibit excellent performance 
when used for downstream tasks. It also returns 
different vectors and contextual embeddings for 
the same word, extracting more information from 
the text. On the other hand, deep learning networks 
offer many advantages for Natural Language 
Processing (NLP), where CNN and RNN are 
commonly used for text classification. Therefore, 
four models were implemented integrating BERT 
with other popular NN models such as CNN, 
LSTM, and BiLSTM. First, the contextual 
information from BERT was assessed. Fine-tuning 
was performed using the dataset to obtain its 
contextual representation, and then an ensemble 
model was created using various ensemble learning 
techniques: aggregation and stacking, with the goal 
of improving performance and robustness, as well 
as obtaining better classification. Figure 1 shows 
the general architecture of the models: Text data 
needs to be converted into numeric tokens and 
organized into several tensors before inputting into 
the BERT model. Here, TensorFlow Hub provides 
a suitable preprocessor (tokenizer) for each BERT 
model, implementing this transformation using the 
TF.text3 library. 

The BERT model generates some dimensional 
embeddings for each token, namely 'sequence 
output' and 'Pooled output,' which are then fed into 
the constructed NN (Keras layer). In this study, 

TensorFlow Hub BERT4 is utilized to compute 
vector space representations of the dataset, 
facilitating the implementation of four distinct 
deep learning models. 
 
3.4.1 Pre-Training 

The pre-processing stage in a text classification 
project using BERT is a crucial step aimed at 
preparing the data for model training. This stage 
begins with data cleansing, which involves 
removing irrelevant or noisy data, such as special 
characters or unnecessary punctuation, to make the 
data cleaner and more structured. Next is case 
folding, the process of converting all text to 
lowercase to ensure consistency and reduce 
complexity caused by differences in capitalization. 
This process is followed by normalization, where 
the data is standardized by correcting spelling 
errors and aligning text format, so words that are 
different but have the same meaning can be 
identified uniformly. 

The next step is stopword removal, which 
eliminates common words like “and”, “or”, 
“which” that do not provide significant information 
for the classification task. Following that, 
stemming is performed, which converts words to 
their root form to simplify word representation and 
reduce data dimensionality. Each step in this pre-
processing phase is designed to improve data 
quality and enhance the efficiency and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
of the BERT model in processing and 
understanding text. By undergoing this series of 
processes, the initially unstructured and varied data 
is transformed into a more homogeneous form and 
ready for model training, ensuring more accurate 
and reliable results in text classification. 
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3.4.2 BERT Based and Fine Tuning 
 
In this experiment, a BERT-based model for 

binary classification is created and fine-tuned to 
improve its 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and performance. The 
model uses the BERT-base-uncased architecture, 
which is a pre-trained transformer model with 12 
transformer layers, each with 768 hidden units and 
12 attention heads per layer. After the BERT layer, 
a dense layer with 1 neuron and a sigmoid 
activation function is added to produce the 
probability of the positive class (1) for binary 
classification. The model is compiled using the 
AdamWeightDecay optimizer, which combines 
Adam with weight decay regularization to reduce 
overfitting during fine-tuning. The learning rate for 
AdamWeightDecay is adjusted using a learning 
rate scheduler, which gradually decreases the 
learning rate as the training progresses. The binary 
crossentropy loss function is used to measure the 
difference between the predictions and the actual 
labels (0 or 1). The evaluation metric used is 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, which measures the proportion of 
correct predictions on the test data. The model is 
trained for 5 𝑒𝑝𝑜𝑐ℎ𝑠 with a batch size of 16, and 
steps per epoch are calculated based on the dataset 
size and batch size. 

In the figure 2, the model architecture and 
training process are visualized, illustrating the 
sequence of operations and layers. After training, 
the model's output, which is in the form of logits 
(raw values before applying the activation 
function), is converted into probabilities using the 
sigmoid function. Final predictions are made using 

a 0.5 threshold to determine whether the model 
predicts the positive or negative class. The model's 
performance is further evaluated by calculating 
accuracy, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1	𝑆𝑐𝑜𝑟𝑒, 
providing a comprehensive view of the model’s 
classification capabilities. This approach aims to 
assess how well the fine-tuned BERT model can 
predict accurately and evaluate its performance in 
the binary classification task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. BERT baseline (adapted from [14]). 
 

 
3.4.3 Combined BERT and LSTM 

 
For the next experiment, a model integrating 

the BERT architecture with two LSTM layers, each 
with 512 units, is developed and evaluated for 
multilabel classification tasks. 

 

 
 

 
 

  

Figure 1. General process of BERT modelling. 
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Figure 3. Combined BERT-LSTM (adapted from [14]). 
 

In Figure 3, the process begins by creating a 
model that uses BERT for feature extraction from 
text, which is then passed to two LSTM layers. The 
first LSTM layer processes the sequence output 
from BERT with return_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 = 𝑇𝑟𝑢𝑒, 
ensuring that the entire sequence is passed to the 
second LSTM layer. The second LSTM layer 
refines the data into a more compact vector 
representation. A dense layer with 512 units and a 
ReLU activation function is applied after the 
LSTM layers to further refine the features. Finally, 
a dense output layer with as many neurons as there 
are classes, using the sigmoid activation function, 
is applied to predict the probability of each label in 
a multilabel fashion. 

The model is compiled using the 
AdamWeightDecay optimizer, which enhances 
learning by using decay techniques on the learning 
rate, reducing the risk of overfitting. The learning 
rate for AdamWeightDecay is adjusted using a 
learning rate scheduler that gradually decreases the 
learning rate during training. The binary 
crossentropy loss function is used for multilabel 
classification, where each label is treated as a 
separate binary classification problem. The 
evaluation metric is 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, which measures 
the proportion of correct predictions across all 
labels. Training is conducted over 5 𝑒𝑝𝑜𝑐ℎ𝑠 with a 
batch size of 16, and the steps per epoch are 
determined by the dataset size and batch size. This 
ensures that the model is trained by processing data 
in batches and updating the weights gradually. 
After training, the model's output, which is in the 
form of logits (raw values), is passed through the 
sigmoid activation function to obtain probabilities 
for each label. The final predictions are made by 
comparing these probabilities to a threshold of 0.5 
for each label. Evaluation metrics such as 
accuracy, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1	𝑆𝑐𝑜𝑟𝑒 are 
calculated for each label individually to assess the 

overall performance of the model in multilabel 
classification tasks. 

 
3.4.4 Combined BERT and BiLSTM 

 
In this study, a model integrating the BERT 

architecture with four Bidirectional LSTM 
(BiLSTM) layers, each with 512 units, is 
developed and evaluated for text classification 
tasks. 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 4. Combined BERT and BiLSTM. 
 

In Figure 4, the process begins by creating a 
model that uses BERT as a feature extractor to 
generate contextual embeddings from the input 
text. The sequential output from BERT is then 
passed through four consecutive BiLSTM layers. 
The first three BiLSTM layers are configured with 
return_sequences=True, ensuring that the entire 
sequence of data is passed along to the next 
BiLSTM layer. The final BiLSTM layer produces 
only the final output without preserving the 
sequence, which is then processed by a dense layer 
for classification. 

The model is compiled using the 
AdamWeightDecay optimizer, which is designed 
to enhance learning performance by applying 
gradual decay to the learning rate. The optimizer 
helps prevent overfitting by gradually reducing the 
learning rate during training. The binary 
crossentropy loss function is used, as it is suitable 
for binary classification tasks. The training process 
is conducted over 5 𝑒𝑝𝑜𝑐ℎ𝑠 with a batch size of 16, 
and steps per epoch are determined by the dataset 
size and batch size. This ensures efficient and 
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stable model training by processing data in batches, 
updating the weights gradually during each epoch. 

After training, the model is evaluated using test 
data. The output, which is in the form of logits, is 
passed through the sigmoid activation function to 
convert them into probabilities. The final 
predictions are made with a threshold of 0.5, 
classifying each input into one of the two possible 
classes. The model’s performance is assessed using 
metrics such as accuracy, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 
𝐹1	𝑆𝑐𝑜𝑟𝑒 to evaluate how well the model classifies 
the test data. This experiment aims to evaluate the 
effectiveness of combining BERT with four 
BiLSTM layers for text classification tasks and to 
analyze the model’s performance in this context. 

 
3.4.5 Combined BERT and CNN 

 
In this study, a model integrating the BERT 

architecture with a Convolutional Neural Network 
(CNN) layer is developed and evaluated for text 
classification tasks.  

 
 
 
 
 
 
 

 
 
 
 

Figure 5. Combined BERT and CNN (adapted from [14]). 
 

In Figure 5, the process begins by using 
BERT to extract contextual embeddings from the 
input text. These embeddings are passed through a 
CNN layer that applies convolution operations 
over the input text to capture local patterns and 
features. The CNN layer is followed by max-
pooling to reduce the dimensionality and focus on 
the most significant features. After the CNN layer, 
a dense layer with 512 units and ReLU activation 
is applied to further process the extracted features. 
The final output layer, consisting of a dense layer 
with 1 neuron and a sigmoid activation function, 
produces the binary classification result. 

The model is compiled using the 
AdamWeightDecay optimizer, which applies 
learning rate decay techniques to enhance model 
training. The binary crossentropy loss function is 
used, appropriate for binary classification tasks. 
The training process is carried out for 5 𝑒𝑝𝑜𝑐ℎ𝑠 
with a batch size of 16, where steps per epoch are 

calculated based on the size of the dataset and batch 
size. This ensures effective and efficient training by 
processing data in batches and gradually updating 
the model’s weights. 

After training, the model’s output, in the form 
of logits, is passed through the sigmoid function to 
convert the logits into probabilities. The final 
predictions are made with a threshold of 0.5, 
classifying the input into one of two classes. The 
model's performance is evaluated using metrics 
such as accuracy, precision, recall	and	F1	score 
to assess how well it classifies the test data. This 
experiment aims to evaluate the effectiveness of 
combining BERT with CNN layers for text 
classification tasks and to analyze the model's 
performance in this context. 
 
3.4.6 Evaluation 

 
The evaluation of the models developed in this 

study is carried out using several performance 
metrics commonly used in text classification tasks: 
accuracy, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1	𝑆𝑐𝑜𝑟𝑒. These 
metrics provide a comprehensive view of how well 
the models classify the test data. 
 
• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 measures the overall correctness 

of the model's predictions. It is calculated as 
the ratio of correctly predicted instances to 
the total number of instances. The formula is: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	/012-3	#5	6#33-67	83-9!67!#:;

<#7=>	/012-3	#5	?:;7=:6-
 (2) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 provides a general indication of 
the model's performance, but it may not be 
sufficient for evaluating imbalanced datasets 
[26]. 

 
• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measures the correctness of 

positive predictions made by the model. High 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 means that when the model 
classifies data as positive, it is mostly correct. 
The formula for 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is: 

 
                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 <.

(<.@A.)
             (3) 

 
where 𝑇𝑃 represents true positives (correctly 
predicted positive cases), and 𝐹𝑃 represents 
false positives (incorrectly predicted positive 
cases) [26]. 

 
• 𝑅𝑒𝑐𝑎𝑙𝑙 (or Sensitivity) measures the model's 

ability to identify all actual positive instances. 
High 𝑟𝑒𝑐𝑎𝑙𝑙 indicates that the model is good 
at capturing positive cases within the dataset. 
The formula for 𝑟𝑒𝑐𝑎𝑙𝑙 is: 
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                              𝑅𝑒𝑐𝑎𝑙𝑙 = 	 <.

(<.@A/)
                (4) 

 
where 𝐹𝑁 represents false negatives 
(instances that were incorrectly predicted as 
negative) [26]. 
 

• 𝐹1	𝑆𝑐𝑜𝑟𝑒 is the harmonic mean of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
and 𝑟𝑒𝑐𝑎𝑙𝑙, providing a balanced measure 
between the two. The 𝐹1	𝑠𝑐𝑜𝑟𝑒 is especially 
useful when there is an imbalance between 
positive and negative classes. The formula for 
𝐹1	𝑠𝑐𝑜𝑟𝑒 is: 

 
              𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	2𝑥 .3-6!;!#:	B	C-6=>>

.3-6!;;!#:@C-6=>>
              (5) 

 
𝐹1	𝑆𝑐𝑜𝑟𝑒 has been widely used in 
classification tasks, especially in domains 
with class imbalances [27].  
 

Evaluation is performed using a test dataset, 
and the performance of each model is calculated 
based on these metrics. For each developed model, 
such as BERT, BERT-LSTM, BERT-BiLSTM, and 
BERT-CNN, these metrics are computed and 
compared to identify the most effective model for 
the classification task. 
 
4. Implementation 

 
4.1 Model Experiment 
 

In this experiment, we evaluated the 
performance of various BERT-based models on a 
classification task, measuring their 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1	𝑠𝑐𝑜𝑟𝑒. The models 
tested include a basic BERT model, BERT with a 
CNN layer, BERT with an LSTM layer, BERT with 
a BiLSTM layer, and a BERT model with two 
LSTM layers. This experiment using whole 
original data, without split data into short and long 
text.  

 
Table 5. Evaluation score. 

Model 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚	 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	 𝑹𝒆𝒄𝒂𝒍𝒍	 𝑭𝟏	𝑺𝒄𝒐𝒓𝒆	

BERT 0.7890 0.760 0.800 0.779 

BERT-

CNN 
0.789 0.770 0.810 0.789 

BERT-
LSTM 0.810 0.780 0.830 0.804 

BERT-
BiLSTM 0.820 0.790 0.840 0.812 

 
The results on the table 5, indicate that all 

models show strong performance, with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
ranging from 78.90% to 82.00%. Notably, the 
BERT-BiLSTM model achieved the highest 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (82.00%) and excelled in 𝑟𝑒𝑐𝑎𝑙𝑙 
(84.00%) and 𝐹1	𝑠𝑐𝑜𝑟𝑒 (81.20%), demonstrating 
its effectiveness in capturing nuanced patterns in 
the data. The addition of BiLSTM layers appears to 
enhance the model’s ability to recognize contextual 
information, improving overall performance. 

The basic BERT model and the BERT-CNN 
model both achieved an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 78.90%, but 
the BERT-CNN model performed slightly better in 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑎𝑛𝑑	𝑟𝑒𝑐𝑎𝑙𝑙, resulting in a higher 
𝐹1	𝑠𝑐𝑜𝑟𝑒 (78.90% vs. 77.90%). The BERT-LSTM 
model showed improved performance across all 
metrics compared to the basic BERT model, 
indicating the benefit of incorporating sequential 
learning mechanisms. 
 

 
 

Figure 6. BERT curve result. 
 

 
 

Figure 7. BERT – CNN curve result. 
 

 
 

Figure 8. BERT - LSTM curve result. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. BERT-BiLSTM curve result. 
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Figures 6-9 depict the training and validation 
performance metrics, specifically the 𝑙𝑜𝑠𝑠 and 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, for different model configurations over 
the course of training 𝑒𝑝𝑜𝑐ℎ𝑠. Each figure contains 
two subplots: the left subplot illustrates the 𝑙𝑜𝑠𝑠 
curves, showing the progression of training 𝑙𝑜𝑠𝑠 
and validation	𝑙𝑜𝑠𝑠 (𝑦 − 𝑎𝑥𝑖𝑠) as the number of 
𝑒𝑝𝑜𝑐ℎ𝑠 (𝑥 − 𝑎𝑥𝑖𝑠) increases, while the right 
subplot shows the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 curves, detailing the 
changes in training 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and validation 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 over the same 𝑒𝑝𝑜𝑐ℎ𝑠. These 
visualizations are used to assess the learning 
dynamics of the models, including their ability to 
reduce error (𝑙𝑜𝑠𝑠) and improve prediction quality 
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) while identifying signs of overfitting 
or underfitting. The trends observed in these curves 
provide insights into the generalization capability 
and effectiveness of the respective model 
architectures during training and validation. 

On Figure 6, BERT shows the loss and 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 curves for the pure BERT model, while 
Figure 7 displays these metrics for the BERT model 
enhanced with CNN. The Figure 6 reveals that the 
pure BERT model experiences a steady decrease in 
both training and validation loss as the number of 
𝑒𝑝𝑜𝑐ℎ𝑠 increases, with corresponding 
improvements in train and validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 
suggesting effective learning without overfitting. 
In contrast, the second image demonstrates that 
while the BERT-CNN model also shows a decline 
in loss, its validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 stabilizes after the 
third epoch and even slightly declines by the fifth 
epoch, indicating potential overfitting or limited 
benefit from the CNN addition. Figure 8 and 9 
further compare the performance of BERT-LSTM 
and BERT-BiLSTM models. The first image 
illustrates that the BERT-LSTM model's training 
and validation loss decrease progressively, with a 
slight gap between them, indicating minimal 
overfitting, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 improves with each 
epoch but plateaus after the third. The second 
image shows that the BERT-BiLSTM model, like 
BERT-LSTM, reduces loss over time, but with a 
sharper decrease in validation loss, suggesting 
better error reduction. However, the validation 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 pattern is similar to BERT-LSTM, 
peaking at the third epoch and then stabilizing, 
indicating that the BiLSTM layer offers limited 
additional improvement in validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
after a certain point. Overall, both models show 
good training performance, with BERT-BiLSTM 
showing a slight edge in generalization over BERT-
LSTM, though validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 does not 
significantly improve after several 𝑒𝑝𝑜𝑐ℎ𝑠. 
 
 
 

4.2 Sentence Length Experiment 
 

Next experiment is to test the model with long 
text and short text. For each text category, four 
different models were tested: BERT, BERT-LSTM, 
BERT-CNN, and BERT-BiLSTM. Evaluation was 
conducted using 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, 
and 𝐹1	𝑆𝑐𝑜𝑟𝑒 metrics to assess each model’s 
effectiveness in recognizing hate speech and 
abusive behavior in social media text. The expected 
results based on the two text length categories are 
as follows. 

 
4.2.1 Test Results on the Long Text Dataset 

(over 100 characters) 
 

On the long text dataset, the BERT-BiLSTM 
model showed the best performance with the 
highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 83.20%, along with superior 
𝑟𝑒𝑐𝑎𝑙𝑙	𝑎𝑛𝑑	𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠 compared to other models. 
This indicates that the BiLSTM layer helps the 
model capture nuanced and deeper context in long 
text. Meanwhile, BERT-CNN achieved good 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 but slightly lower 
𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠 than BERT-BiLSTM. 

The BERT and BERT-LSTM models also 
produced fair results, though they did not perform 
as well as BERT-BiLSTM and BERT-CNN, 
potentially due to limitations in capturing complex 
context from longer texts. The complete results of 
testing on the long text dataset are shown in the 
table below: 

Table 6. Evaluation score on the long text dataset. 
 

Model 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚	 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	 𝑹𝒆𝒄𝒂𝒍𝒍	 𝑭𝟏	𝑺𝒄𝒐𝒓𝒆	

BERT 79.50% 77.20% 80.10% 78.60% 

BERT-
LSTM 80.30% 78.10% 82.00% 79.90% 

BERT-
CNN 81.10% 81.00% 82.20% 81.60% 

BERT-
BiLSTM 83.20% 82.30% 84.00% 83.10% 

 
 

4.2.2 Test Results on the Short Text Dataset (100 
characters or less) 

 
On the short text dataset, BERT-CNN 

outperformed in 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 with the 
highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 79.80% and an 𝐹1	𝑠𝑐𝑜𝑟𝑒 of 
79.10%. This suggests that convolutional layers are 
highly effective in capturing essential features 
from short texts, which contain limited context but 
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often have key terms relevant to detecting hate 
speech or abusive behavior. 

The BERT-LSTM model also performed well, 
achieving a balanced result in 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 
𝑟𝑒𝑐𝑎𝑙𝑙. Although BERT-BiLSTM achieved strong 
𝑟𝑒𝑐𝑎𝑙𝑙, its 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 was slightly lower on the 
short text dataset. This may be because the model 
tends to require more context to achieve optimal 
results. 

The following table shows the results of testing 
on the short text dataset: 

Table 7. Evaluation score on the short text dataset. 
 

Model 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 

BERT 77.20% 76.10% 77.90% 77.00% 

BERT-
LSTM 78.60% 77.80% 78.50% 78.10% 

BERT-
CNN 79.80% 80.00% 78.20% 79.10% 

BERT-
BiLSTM 78.50% 78.10% 79.10% 78.60% 

 
Testing with two separate text length 

categories revealed that the BERT-BiLSTM model 
is highly effective on the long text dataset, as it can 
capture broader context. Meanwhile, the BERT-
CNN model excelled in processing the short text 
dataset by identifying key features even within 
limited context. Dividing the dataset based on text 
length provides additional insights into each 
model’s strengths and weaknesses in recognizing 
hate speech patterns in social media text. 

 
 

 
 
 
 
 
 
 
 

 
Figure 10. Performance comparison for long and short text. 

 
 

5. Evaluation 
 
The experiment results show that although 

BERT-based models, particularly BERT-BiLSTM, 
perform very well in handling long texts, some 
types of errors still occur, especially in classifying 
more subtle and ambiguous hate speech. For 
example, in short texts or those using figurative 

language, sarcasm, or humor, the model struggles 
to identify deeper context. This indicates that while 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑟𝑒𝑐𝑎𝑙𝑙 are high, the model may not 
be sensitive enough to social and cultural nuances 
in hate speech, causing it to fail to recognize 
comments that are not explicit or use indirect forms 
of language. 

In addition, overfitting issues also arise, 
especially with the BERT-CNN model, whose 
validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 stagnates after several 
𝑒𝑝𝑜𝑐ℎ𝑠, suggesting that the model is too focused 
on certain features in the training data. This makes 
it difficult for the model to handle variations in data 
that are more diverse, such as texts not present in 
the training data or those with a different structure. 
To address this issue, adding more variety to the 
training data, applying better regularization 
techniques, and improving the preprocessing 
process to handle more complex and ambiguous 
texts are necessary. 
 
6. Conclusion 

 
The experiment evaluated several BERT-based 

models on a classification task, focusing on metrics 
such as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 
𝐹1	𝑆𝑐𝑜𝑟𝑒. The BERT-BiLSTM model 
demonstrated the best overall performance, 
achieving the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (82.00%) and 
strong 𝑟𝑒𝑐𝑎𝑙𝑙	and 𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠. Other models like 
BERT-CNN and BERT-LSTM also performed well, 
showing improvements in specific metrics over the 
basic BERT model. Experiment on longer texts, 
BERT-BiLSTM achieved the best 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
(83.20%) with high 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝐹1	𝑠𝑐𝑜𝑟𝑒𝑠, 
indicating its strength in capturing complex, 
nuanced context. BERT-CNN also performed well 
on long texts with strong 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 
though with a slightly lower 𝐹1	𝑠𝑐𝑜𝑟𝑒. For shorter 
texts, BERT-CNN excelled, achieving the highest 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (79.80%) and an 𝐹1	𝑠𝑐𝑜𝑟𝑒 of 79.10%, 
suggesting that convolutional layers effectively 
extract key features in brief texts. BERT-LSTM 
showed balanced 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 across text 
lengths, while BERT-BiLSTM, though high in 
𝑟𝑒𝑐𝑎𝑙𝑙, showed slightly lower 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 on short 
texts due to its reliance on broader context. These 
findings underscore the importance of choosing 
model architectures based on text characteristics: 
BERT-BiLSTM is ideal for nuanced understanding 
in longer texts, while BERT-CNN is more effective 
for concise, targeted content. 

From the performance comparison on figure 6, 
it is evident that the BERT-BiLSTM model 
performs better on long texts, achieving the highest 
values in each metric, including 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1	𝑆𝑐𝑜𝑟𝑒. This indicates 
that the BiLSTM architecture is effective at 
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capturing longer and more sequential context. 
Conversely, for short texts, the BERT-CNN model 
shows the best performance, especially in 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1	𝑆𝑐𝑜𝑟𝑒 metrics, suggesting that 
CNN is more efficient at detecting patterns in 
shorter texts. In conclusion, the optimal model 
choice can be adjusted based on text length: BERT-
BiLSTM is suitable for analyzing longer texts, 
while BERT-CNN is more appropriate for shorter 
texts. However, the research has some limitations, 
including a narrow focus on BERT variations with 
CNN, LSTM, and BiLSTM layers, which may have 
led to missed opportunities to explore more 
advanced architectures like transformers or 
attention mechanisms. The models also exhibited 
signs of overfitting, particularly the BERT-CNN 
model, whose validation 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 plateaued early, 
suggesting the need for better regularization 
techniques. Additionally, the lack of 
hyperparameter tuning and cross-validation may 
have prevented the models from reaching their full 
potential. 

Future research should consider incorporating 
advanced architectures, conducting thorough 
hyperparameter optimization, and addressing 
overfitting through techniques like early stopping 
or increased regularization. Exploring model 
interpretability and implementing cross-validation 
could also enhance the robustness and transparency 
of the models, ultimately leading to better 
performance and generalizability in classification 
tasks. Furthermore, future research could explore 
more diverse and advanced architectures, such as 
transformers with attention mechanisms, or even 
pre-trained models like RoBERTa or GPT, which 
may provide better performance by leveraging 
more sophisticated language representations. 

A thorough hyperparameter optimization 
process, using techniques like grid search or 
Bayesian optimization, could help identify the best 
settings for each model, thereby improving 
performance. To address overfitting, future 
experiments could implement techniques like early 
stopping, increased regularization (e.g., dropout), 
or data augmentation. Additionally, experimenting 
with different numbers of 𝑒𝑝𝑜𝑐ℎ𝑠 and learning 
rates might provide better insights into training 
dynamics. Incorporating interpretability 
techniques like SHAP or LIME could offer insights 
into the models' decision-making processes, 
making them more transparent and trustworthy. 
Cross-validation would provide a more robust 
estimate of model performance, ensuring that the 
results are not overly dependent on specific train-
test splits. Finally, experimenting with different 
data augmentation techniques could help improve 
model generalization, especially in cases where the 
dataset might be limited or imbalanced. 
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