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Abstract 

 
Forest and land fires (FLF) severely damage forest ecosystems and reduce their functionality. 

Predicting areas prone to fires is crucial for effective management and prevention. Machine learning 
(ML) has shown potential in this field. By 2022, East Nusa Tenggara (NTT) experienced the highest 
incidence of fires in Indonesia, with 70,637 hectares burned. This study evaluates NTT's FLF 
vulnerability using seven ML methods: Gaussian Naive Bayes, Support Vector Machine, Logistic 
Regression, Artificial Neural Network, Random Forest, Gradient Boosting Machine, and Extreme 
Gradient Boost (XGB). A geospatial dataset combining NTT's 2022 fire data and fourteen fire-related 
factors was developed with ArcGIS. Using the Information Gain Ratio for feature selection, twelve 
key features were identified: Elevation, Slope angle, Slope Aspect, Plan Curvature, Land Cover, 

NDVI, Distance to Road, Distance to Buildings, Annual Rainfall, Average Temperature, Wind Speed, 
and Relative Humidity. The XGB model performed best, with AUC values of 0.959 for training and 
0.743 for testing. The resulting vulnerability map revealed key fire factors: low elevation, gentle 
slopes, curved terrain, forest cover, poor vegetation health, human activity, distant firefighting 
resources, low rainfall, high temperatures, high wind speeds, and low humidity. Recommendations 
include land management, fire-resistant vegetation, policy enforcement, community education, and 
infrastructure enhancement. 
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1. Introduction 

 

Terrestrial ecosystems such as forests play a 

fundamental role in ecological equilibrium, soil 

and water conservation, environmental 

enhancement, carbon sequestration, and oxygen 

production [1]. Nonetheless, the integrity of 
forests faces multifaceted threats, including urban 

expansion, deforestation, natural disasters such as 

landslides and storms, and forest fires [2]. Forest 

and land fires (FLF) pose significant hazards to 

forest ecosystems, often spiraling out of control 

and causing detrimental impacts on both natural 

resources and human welfare [3]. 

As per data from the Ministry of Environment 

and Forestry [4], Indonesia undergoes a 

substantial area of FLF amounting to 204.9 

thousand hectares in 2022. This area 

predominantly comprises mineral soil, covering 
approximately 92.96%, followed by peat soil, 

accounting for 7.04%. Notably, East Nusa 

Tenggara (NTT) Province emerged as the region 

most affected by fires, with 70,637 hectares 

burned, primarily encompassing savanna, 

shrublands, and dry agricultural areas intermixed 

with shrubs. 

The repercussions of FLF are profound, 

leading to the degradation of forest functions such 
as soil ecology, hydrology, land integrity, and 

erosion [4-5]. Furthermore, these fires precipitate 

biodiversity loss, often resulting in species 

extinction [3]. Given the substantial losses 

incurred, governmental efforts are continuously 

directed toward fire prevention and control 

through various policy frameworks and programs 

[4]. 

Accurate prediction of FLF is pivotal for 

effective mitigation and prevention strategies [6]. 

Additionally, mapping the vulnerability of regions 

to FLF is essential for resource allocation and 
land use planning [7]. Machine learning (ML) 

methods have been extensively explored for  
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Table 1. FLF-causal factors [1-2], [5-11]. 

Category Specific conditioning factor 

Topography Altitude, Slope Angle, Slope Aspect, Plan Curvature 

Hydrology Distance to Rivers, Topographic Wetness Index (TWI) 

Land coverage Normalized Difference Vegetation Index (NDVI), Land Cover 

Meteorology Rainfall, Temperature, Wind Speed, Relative Humidity 

Anthropogenic engineering Distance to Roads, Distance to Buildings 

  

predicting and mapping FLF vulnerabilities, with 

tree-based algorithms such as Random Forest 

(RF), Gradient Boosting Machine (GBM), and 

Extreme Gradient Boosting (XGB) demonstrating 

promising results [1-2], [5-11]. However, the 

superiority of these methods varies across studies, 

indicating that predictive performance is 
contingent upon the unique characteristics and 

circumstances of the study area. For instance, 

while some studies report GBM surpassing RF 

accuracy [8], others demonstrate RF 

outperforming GBM [1], [11] or XGB exceeding 

both RF and GBM [2], [7]. These discrepancies 

underscore the influence of local conditions on 

model efficacy. 

Table 1 presents an overview of the primary 

factors contributing to FLF, commonly integrated 

into ML modeling approaches. However, these 
factors may not be directly applicable for 

modeling purposes. Thus, various feature 

selection techniques such as Variance Inflation 

Factor (VIF), Information Gain Ratio (IGR), 

Backward Elimination (BE), and RF are essential 

to identify pertinent factors contributing to FLF. 

Proper feature selection enhances prediction 

accuracy. 

Based on the abovementioned issues, we have 

formulated three critical questions for our study: 

Which feature selection methodologies and ML 

Model combination shows optimal predictive 
efficacy in evaluating forest susceptibility within 

the NTT Province? What underlying factors 

contribute to the incidence of FLF within NTT 

Province? What strategic interventions may be 

posited to mitigate the occurrence of FLF within 

NTT Province? 

To address these questions, we propose 

utilizing ML techniques to predict and map FLF 

susceptibility in NTT Province. Specifically, 

seven ML models—namely Gaussian Naive 

Bayes (GNB), Support Vector Machine (SVM), 
Logistic Regression (LR), Artificial Neural 

Network (ANN), RF, GBM, and XGB—are 

evaluated. Furthermore, in  

contrast to conventional research approaches, this  

study analyzes three distinct feature selection  

methodologies within each ML model. 

Consequently, this comprehensive analysis aims 

to determine the optimal combination of feature 

selection techniques and ML models to achieve 

superior prediction accuracy. 

2. Related Works 

 

Numerous investigations have been conducted 

across diverse scenarios to evaluate and predict 

the susceptibility of FLF in global regions. 

Hidayanto et al. [8] conducted a comparative 

analysis of three ML algorithms—GBM, RF, and 
SVM—for constructing forest fire susceptibility 

(FFS) models in the Pisang Island region of 

Central Kalimantan. Feature selection was 

executed utilizing Spearman's Correlation 

Coefficients and RF methodologies. The empirical 

findings reveal that GBM performs superior to 

other ML algorithms, demonstrating the highest 

predictive capability with an Area Under the 

Curve (AUC) accuracy of 88.2%. 

Mohajane et al. [5] conducted a comparative 

analysis of five machine learning techniques, 
namely Multi-Layer Perceptron (MLP), LR, 

Decision Tree (DT), RF, and SVM, for the 

modeling and mapping of forest fires in the 

Hoceima region, located in the northern part of 

Morocco. Using the Frequency Ratio Analysis 

method, they performed feature selection on ten 

factors contributing to forest fires. The findings of 

this study indicate that the Random Forest method 

outperformed the other four methods, achieving 

the highest AUC accuracy of 95.2%. 

Rakshit et al. [3] conducted predictive 

modeling of forest fires within the Montesinho 
Natural Park, Portugal, employing four distinct 

ML algorithms: K-Nearest Neighbor (KNN), DT, 

SVM, and NB. They curated a dataset comprising 

eight pertinent variables to feed into the ML 

above models. The assessment of model 

performance revealed that DT showed significant 

efficacy, demonstrating an AUC accuracy of 99%. 

In the study by Shao et al. [1], four ML 

techniques, specifically RF, SVM, GBM, and 

MLP, were employed to assess the potential risk 

of forest fires across mainland China. A 
comprehensive dataset comprising 20 forest fire-

related causal factors was assembled and refined 

utilizing the RF algorithm. Performance 

assessment through AUC analysis revealed that 

the RF model exhibited superior predictive 

capability, attaining the highest AUC accuracy of 

95.1%. 

Qiu et al. [9] developed an RF model 

employing 23 climate and land surface variables 

inputs. The significance of individual variables 
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was assessed utilizing the Shapley value method. 

Empirical findings indicate that the proposed 

approach yields notably high AUC accuracy, 

specifically achieving a rate of 98%. 

Moayedi and Khasmakhi [10] conducted a 

study on wildfire susceptibility assessment 

employing two enhanced ML algorithms, 

Biogeography-based Optimization-Artificial 

Neural Network (BBO-ANN) and ANT Colony 

Optimization-Artificial Neural Network (ACO-
ANN). In this research, fifteen variables was 

chosen utilizing the frequency ratio analysis 

technique. The findings revealed that the BBO-

ANN approach achieved the highest performance, 

exhibiting an AUC accuracy of 84%. 

In the study conducted by Tan and Feng [11], 

an analysis was undertaken to assess the 

effectiveness of RF, SVM, and GBM techniques 

for mapping forest fire risk areas within Hunan 

Province, China. The VIF technique was 

employed in this investigation to identify and 
select 22 pertinent factors associated with forest 

fire occurrence. Empirical findings revealed that 

the RF model exhibited superior performance to 

SVM and GBM, achieving a notable AUC 

accuracy of 97.2%. 

Akinci and Akinci [2] assessed forest fire 

susceptibility within the Antalya district of Turkey 

utilizing four machine learning methodologies: 

ANN, GBM, RF, and XGB. Furthermore, the VIF 

approach was employed in this study to determine 

relevant factors associated with forest fires, as 
identified by the researchers. The observed 

findings highlight that the XGB model exhibits 

superior performance, achieving an AUC 

accuracy rate of 97.5% compared to other models. 

Based on prior studies above, it has been 

observed that Decision Tree-based methodologies 

show superior predictive accuracy in scenarios 

concerning the susceptibility prediction of FLF. 

Notably, the RF model has demonstrated the 

highest accuracy in various study regions, such as 

Northern Morocco and China [1], [5], [11]. 

Additionally, the GBM model exhibited superior 
predictive accuracy in the research conducted by 

Hidayanto within Pisang Island, Central 

Kalimantan [8]. Conversely, the XGB model 

delivered the most accurate predictions in studies 

conducted by Seddouki [7] and Akinci [2]. These 

investigations highlighted that the XGB model 

consistently outperformed other Decision Tree-

based models regarding predictive accuracy. 

In a specific case study conducted on Pisang 

Island, Central Kalimantan [8], the findings 

indicated that the GBM model exhibited the 
highest accuracy, with an AUC value of 0.882, 

followed by RF and SVM with AUC values of 

0.871 and 0.869, respectively. In contrast, 

research conducted by Tan and Feng in China's 

Hunan Province [11] employed the same three 

ML models as utilized by Hidayanto. However, 

their results indicated that the RF model 

outperformed the others regarding predictive 

accuracy, followed by GBM and SVM. The AUC 

accuracy values for this study's RF, GBM, and 

SVM models were 0.972, 0.958, and 0.953, 

respectively. These findings highlight the 

influence of the specific characteristics and 
environmental conditions of the study area on the 

predictive performance of the models, thereby 

leading to variations in prediction outcomes 

across geographically diverse regions. 

 

3. Study Area 

 

The study area in this research is located in 

NTT Province, Indonesia, highlighted with red 

line in Figure 1. NTT spans from 80° to 120° 

South Latitude and 1180° to 1250° East 
Longitude, covering an extensive landmass of 

46,452.38 km². Geographically, NTT shares 

borders with the Flores Sea to the north, the 

Indian Ocean to the south, the State of Timor 

Leste to the east, and West Nusa Tenggara 

Province to the west. Within NTT Province are 21 

districts and one city distributed across seven 

principal islands: Flores, Sumba, Timor, Alor, 

Lembata, Rote, and Sabu. 

 

 
 
Figure 1. Study area: NTT Province is highlighted in red, with 

forest areas colored green. The scale bar (in kilometers) is 

located at the bottom left, and the north arrow is at the bottom 

right. 

 

NTT Province experiences a dichotomous 

climate characterized by two distinct seasons: a 

dry period from June to September and a wet 

season from December to March. Due to its 
proximity to Australia, atmospheric currents 

originating from Asia undergo desiccation en 

route to NTT, resulting in diminished moisture 

content and reduced precipitation compared to 

regions closer to Asia. Consequently, drought 

conditions persist for prolonged durations within 

NTT Province. 

Temperature profiles in NTT exhibit notable 

variations, with the mean highest recorded 
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temperature in 2022 reaching 32.8°C and the 

lowest at 16.2°C. However, the average 

temperature remains relatively elevated, between 

27°C and 28°C. Regarding precipitation, NTT 

experienced an average of 145 rainy days in 2022, 

with the highest occurrence observed in 

Manggarai Regency and the lowest in East Flores 

Regency [12]. 
 

4. Methodology 

 

This research consists of several stages. 

Initially, we gathered the locations where FLF 

happened in the NTT province along with 

geographical information related to that region. 

These FLF locations were marked with a spatial 

resolution of 375 meters, meaning each point on 

the map represents a square area on the ground 

measuring 375 meters by 375 meters. Typically, 
data points in nearby regions can show how the 

fire spreads. Subsequently, this data underwent 

processing via ArcGIS Pro software. Specifically, 

the FLF data points (serving as target variables) 

and causal factors contributing to forest fires (as 

predictor variables) were collated and processed, 

then exported in CSV format and transposed into 

Python data frames for application in subsequent 

feature selection and ML modeling phases. In 

order to ensure a comprehensive representation of 

data distribution, we randomly selected 80% of 

our dataset (6624 data points, with 3309 for non-
FLF and 3315 for FLF classes) for training. The 

remaining 20% (1656 data points, with 831 for 

non-FLF and 825 for FLF classes) will be used for 

testing. 

The feature selection phase encompasses 

multicollinearity analysis, entailing the 

computation of VIF values to identify 

multicollinearity among predictor variables. 

Predictor variables exhibiting VIF values 

exceeding five are excluded from subsequent 

feature selection stages. Following this, three 
feature selection methodologies—IGR, BE, and 

RF—are concurrently employed to eliminate 

irrelevant features during the modeling phase. 

Consequently, three distinct feature groups 

(corresponding to each feature selection method) 

are generated for employment in the modeling 

phase. 

The modeling process involves the utilization 

of seven distinct ML algorithms—GNB, SVM, 

LR, ANN, RF, GBM, and XGB. Each ML model 

is constructed utilizing the feature above sets as 

predictor variables and evaluated based on 
accuracy metrics. The feature groups producing 

the most accurate model is chosen for the 

subsequent ML model evaluation or comparison 

stage. Hyperparameter tuning for each ML model 

is conducted using the "GridSearchCV" technique 

to ascertain optimal hyperparameter 

configurations. 

Comparative analyses of prediction outcomes 

from the seven models are conducted via 

statistical methods and ROC curves. The ML 
model exhibiting the highest AUC value is 

employed for mapping FLF vulnerability, 

facilitating predicting vulnerability classes for 

individual pixels within the NTT province region. 

This mapping is subsequently categorized into 

five risk classes: very low, low, moderate, high, 

and very high. Finally, the FLF vulnerability map 

are compared with relevant causal factor raster for 

further analytical exploration. The insights 

obtained from this analysis inform strategies for 

addressing FLF challenges within the NTT 
province. 

 

4.1 Data Preparation 

 

4.1.1 Data collection 

 

Spatial data were collected from diverse 

sources to construct the FLF dataset in this study. 

Initially, the Indonesian Earth Map provided by 

the Indonesian Geospatial Information Agency 

was utilized to delineate the territorial boundaries 

of NTT Province, serving as the designated study 
area. Subsequently, a Shuttle Radar Topography 

Mission (SRTM) Digital Elevation Model (DEM) 

with a spatial resolution of 30 meters was 

acquired from the United States Geological 

Survey (USGS) website to analyze topographic 

characteristics within the NTT Province. This 

SRTM DEM dataset, released by the USGS on 

September 23, 2014, was employed for 

topographic analysis. Moreover, Landsat 8 

OLI/TIRS imagery, covering September 2021 to 

September 2022, was sourced from the USGS 
website to ensure comprehensive satellite 

coverage of NTT Province with minimal cloud 

cover (below 5%). 

Additionally, over 4000 FLF data points in 

NTT Province for the year 2022 were sourced 

from the NASA Fire Information for Resource 

Management System (FIRMS) website, derived 

from the SUOMI satellite's Visible Infrared 

Imaging Radiometer Suite (VIIRS) with a spatial 

resolution of 375m. Furthermore, in July 2023, 

data on road networks, building locations, and 

river networks were obtained from 
OpenStreetMap, facilitating analyses on the 
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Figure 2. FLF inventory map: (a) FLF points (green) and (b) non-FLF points (red). The map shows 4140 FLF points extracted from 

NASA FIRMS data for 2022 and 4140 non-FLF points randomly generated across shrubland, herbaceous vegetation, agricultural 

land, and forested areas. The scale bar in kilometers is located at the bottom left, and the north arrow is at the bottom right. 

 

proximity of fire occurrences to key 

infrastructural and natural features. Next, we 

sought the most recent climate data available. We 

acquired the 2022 rainfall data from the Climatic 

Research Unit (CRU) dataset of the University of 

East Anglia. Additionally, we sourced the 2020 

data for temperature, wind speed, and relative 

humidity from NASA Prediction of Worldwide 
Energy Resource (POWER). Finally, land cover 

data specific to NTT Province was obtained from 

Copernicus Global Land Services, released in 

2019, and utilized for analyses concerning land 

use patterns within the region. 

 In our FLF analysis, we didn't explicitly 

account for time-related factors. This choice was 

made because our study prioritizes examining 

variables like topography, hydrology, land cover, 

weather, and human interventions, which are 

commonly studied in this field [2-3], [4-7]. 
Nevertheless, we acknowledge that considering 

temporal and seasonal patterns could offer 

valuable insights. Future research could explore 

incorporating these factors for a more 

comprehensive analysis. 

 

4.1.2 Data preprocessing 

 

 Spatial data processing is crucial for effective 

feature selection and modeling. In this study, we 

utilized ArcGIS Pro software to process spatial 

data. The FLF dataset was constructed by 
integrating 4140 FLF data points obtained from 

NASA FIRMS as feature points. These points 

were categorized as "1," denoting FLF presence at 

respective coordinates. Additionally, randomly 

generating non-FLF data points, especially in a 

1:1 ratio, is a well-established and validated 

method in spatial modeling research. It ensures 

the balanced representation of both classes and 

enhances the reliability of model evaluation and 

susceptibility assessment [1-2], [5], [7-8], [10-11]. 

This process involved the creation of 4,140 
random non-FLF data points, with a buffer of 500 

meters between each other, which were randomly 

distributed across different land cover types, such 

as shrubland, herbaceous vegetation, agricultural 

land, and forest, to ensure adequate representation 

in areas prone to FLF occurrence [1]. The 

randomly generated points were labeled "0" to 

signify non-FLF data. Consequently, the study 

encompassed a total of 8280 data points. The 

spatial distribution of FLF and non-FLF points is 

illustrated in Figure 2. 
Four topographic factors were identified with 

a resolution of 30 meters. The SRTM DEM raster 

utilizing SRTM DEM data with a spatial was 

subsequently transformed into the WGS 1984 

UTM Zone 51S coordinate system, specifically 

chosen for its compatibility with the NTT 

Province area. The surface toolset within ArcGIS 

Pro's spatial analysis tools facilitated the 

extraction of four causal factors: Elevation, Slope 

Angle, Slope Aspect, and Plan Curvature. 

Furthermore, raster computations were 
conducted to acquire topographic wetness index 

(TWI) variable. Initially, the unclassified slope 

degree raster is converted into radians 

("TanSlope") utilizing the "raster calculator" tool, 

as delineated by equation (1) [13]. 

 

𝑇𝑎𝑛𝑆𝑙𝑜𝑝𝑒 =  𝑇𝑎𝑛 (𝑆𝑙𝑜𝑝𝑒 ×
𝜋

180
)      (1) 

 

Subsequently, a further conversion employing 

the "raster calculator" tool, as specified by 

equation (2) [14], is undertaken to eliminate zero 

values. 

 

𝛽 = 𝑐𝑜𝑛(𝑇𝑎𝑛𝑆𝑙𝑜𝑝𝑒 == 0,0.001, 𝑇𝑎𝑛𝑆𝑙𝑜𝑝𝑒)   (2) 

 

The subsequent phase entails the projection of the 

30 m SRTM DEM raster into the WGS 1984 

UTM Zone 51S coordinate system, with a cell 

resolution of 30 m. This DEM raster is then 
subjected to processing utilizing the "fill" tool 

from the "hydrology toolset," followed by 

additional processing using the "flow direction" 

and "flow accumulation" tools. The results of the 

Flow Accumulation raster are then rescaled to the 

cell size using equation (3) [13].  

 

(a) (b) 
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Table 2. FLF causal factors and their classes. 

Category Classes 

Elevation (m) (1) [<0]; (2) [0, 400]; (3) [400, 880]; (4) [800, 1200]; (5) [1200, 1600]; (6) [1600, 2000];  

(7) [>2000]  

Slope Angle (degree) (1) [< 5]; (2) [5, 10]; (3) [10, 15]; (4) [15, 20]; (5) [20, 25]; (6) [25, 30]; (7) [30, 35];  

(8) [35, 40]; (9) [40, 45]; (10) [>45] 

Slope Aspect (1) North; (2) Northeast; (3) East; (4) Southeast; (5) south; (6) southwest; (7) west;  

(8) northwest 

Plan Curvature (1) concave [< -0.05]; (2) flat [-0.05, 0.05]; (3) convex [> 0.05] 

TWI  (1) [0, 5]; (2) [5, 7.5]; (3) [7.5, 10]; (4) [10, 12.5]; (5) [> 12.5] 

Land Cover (1) Shrubland; (2) Herbaceous Vegetation; (3) Cropland; (4) Built-up; (5) Bare Soil;  

(6) Water Bodies; (7) Herbaceous Wetland; (8) Forest 

NDVI (1) [< 0]; (2) [0, 0.33]; (3) [0.33, 0.66]; (4) [>0.66] 

Distance to Roads (m) (1) [0, 200]; (2) [200, 400]; (3) [400, 800]; (4) [800, 2000]; (5) [>2000] 

Distance to Rivers (m) (1) [0, 200]; (2) [200, 400]; (3) [400, 800]; (4) [800, 2000]; (5) [>2000] 

Distance to Buildings (m) (1) [0, 200]; (2) [200, 400]; (3) [400, 800]; (4) [800, 2000]; (5) [>2000] 

Annual Rainfall (mm) (1) [0, 51]; (2) [51, 99]; (3) [99, 141]; (4) [141, 188]; (5) [188, 235]; (6) [235, 293];  

(7) [293, 344]; (8) [344, 392]; (9) [392, 434]; (10) [434, 470] 

Average Temperature 

(Celsius) 

(1) [25.388, 25.846]; (2) [25.847, 26.222]; (3) [26.223, 26.530]; (4) [26.531, 26.782];  

(5) [26.783, 26.988]; (6) [26.989, 27.157]; (7) [27.158, 27.296]; (8) [27.297, 27.465];  

(9) [27.466, 27.671]; (10) [27.672, 27.923] 

Average Wind Speed (m/s) (1) [1.868, 2.164]; (2) [2.165, 2.385]; (3) [2.386, 2.555]; (4) [2.556, 2.687]; (5) [2.688, 2.858]; 

(6) [2.859, 3.079]; (7) [3.080, 3.366]; (8) [3.367, 3.738]; (9) [2.739, 4.220]; (10) [4.221, 4.846] 

Average Relative Humidity 

(mm/day) 

(1) [72.695, 73.949]; (2) [73.950, 74.696]; (3) [74.697, 75.140]; (4) [75.141, 75.404];  

(5) [75.405, 75.561]; (6) [75.562, 75.825]; (7) [75.826, 76.269]; (8) [76.270, 77.016];  

(9) [77.017, 78.271]; (10) [78.272, 80.382] 

 

𝛼 = (𝐹𝑙𝑜𝑤𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 1) × 𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒     (3) 

 

Ultimately, to derive the TWI raster, the flow 

accumulation (𝜶) and slope values in radians (𝜷), 

acquired from the previous calculations, are 

employed. The computations are performed by 

equation (4) [13]. 
 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝛼

𝛽
)       (4) 

 

 Moreover, to generate the raster Normalized 

Difference Vegetation Index (NDVI), Landsat 8 

OLI/TIRS satellite imagery obtained from the 
USGS data source was employed. NDVI was 

computed by measuring the normalized difference 

between light intensities in the red and near-

infrared (NIR) bands. In Landsat 8 imagery, the 

red band corresponds to band 4, while the NIR 

band corresponds to band 5. Hence, the NDVI 

calculation process was executed utilizing the 

raster calculator tool by applying equation (5) 

[15]. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
=

𝐵𝑎𝑛𝑑5−𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5+𝐵𝑎𝑛𝑑4
       (5) 

 

Three additional raster causal factors, 

including Distance to Roads, Distance to Rivers, 

and Distance to Buildings, were obtained by 
applying the Euclidean distance tool within the 

spatial analysis functionalities of ArcGIS Pro. 

This tool facilitates the computation of distances 

from individual raster pixels to specified 

geographical features. As outlined in the 

preceding subsection, the road, river, and building  

 

data were sourced from the OpenStreetMap 

shapefile. 

 Moreover, the procedure for handling climatic  

data, such as raster-based Annual Rainfall,  

Average Temperature, Average Wind Speed, and 
Average Relative Humidity, encompasses several 

sequential stages. Initially, the climatic data is 

imported into the ArcGIS Pro software 

environment. Subsequently, it was projected into 

the WGS 1984 UTM Zone 51S coordinate 

reference system and spatially delineated based on 

the designated climatic parameters. The "cell 

statistics" tool is employed to compute the sum or 

average statistics. The subsequent step entails 

converting raster data into point features utilizing 

the "raster to point" functionality. These point 
features are then analyzed via the "inverse 

distance weighting" method to generate a raster 

representation of the climatic dataset. 

Consequently, ArcGIS Pro software 

incorporated Raster land cover data from 

Copernicus Global Land Services. This raster 

dataset necessitated no further preprocessing as 

the land cover information retrieved for this study 

was readily available and pre-classified into 

distinct classes. Furthermore, these causal factor 

raster were classified into distinct classes, as 

outlined in Table 2 and shown in Figure 3. 
Subsequently, following the classification 

process, raster values were extracted from the 

fourteen aforementioned causal factor raster for 

each coordinate point within the FLF inventory. 

This data was subsequently exported as a comma-

separated values (CSV) file for employment in 

data modeling. Furthermore,  the  fourteen  raster-  
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Figure 3. FLF influencing factors: (a) Elevation; (b) Slope Angle; (c) Slope Aspect; (d) Plan Curvature; (e) TWI; (f) Land Cover; 

(g) NDVI; (h) Distance to Roads; (I) Distance to Rivers; (j) Distance to Buildings; (k) Annual Rainfall; (l) Average Temperature; 

(m) Average Wind Speed; (n) Average Relative Humidity. The color indicates the raster value, and the label is at the bottom left. 

The north arrow is located at the bottom right. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 

(m) (n) 
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based causal factors were exported in the Tag 

Image File Format (TIFF) for the following 

mapping tasks. 

 

4.1.3 Data normalization 

 

In this study, we employed the standard score 

method [16] for normalizing the predictor 

variables. This method, also known as 𝔃-score 

normalization, is computed using equation (6). 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
            (6) 

 

where 𝝁 represents the mean of the data 

values, and 𝝈 represents the standard deviation of 

the data values. Additionally, the standard 

deviation, where 𝒏 represents the number of data 

points and 𝒙𝒋 (𝒋 = 𝟏, 𝟐, … , 𝒏) represents the 

individual data values, can be calculated using the 

equation (7). By applying 𝔃-score normalization, 

the resulting normalized values (𝒙𝒏𝒐𝒓𝒎) will have 

a mean of 0 and a standard deviation of 1. This 

process enables more effective comparison and 

interpretation of the data across different 

variables. 

 

𝜎 = √
1

𝑛−1
∑ (𝑥𝑗 − 𝜇)

2𝑛
𝑗=1                   (7) 

 

 

4.2 Feature selection 

 

4.2.1 Multicollinearity analysis 

 

It is essential to detect and mitigate 

collinearity among explanatory factors or 

predictor variables to ensure the precision of 

predictive outcomes. Collinearity typically arises 

when two or more predictor variables exhibit a 
substantial association. In certain instances, 

collinearity may extend to involve three or more 

predictor variables, termed multicollinearity. This 

study employs the VIF method to identify 

multicollinearity. VIF is defined as the ratio of the 

variance of an influencing factor (𝑭𝒊) when 

incorporated into a comprehensive regression 

model to the variance of the same influencing 

factor (𝑭𝒊) when included individually in a 

regression model without that same factor (𝑭𝒊) 

while considering the presence of other variables 

[17]. 

 

𝑉𝐼𝐹(𝐹𝑖) =
1

1−𝑅
(𝑋𝑖 |𝑋−𝑖)

2             (8) 

 
 

The VIF computation for each causal factor is 

presented in equation (8). Where 𝑹𝑿𝒊|𝑿−𝒊

𝟐  denotes 

the coefficient of determination resulting from 

regressing the 𝒊-th variable (𝑿𝒊) against all 

predictor variables (𝑿−𝒊). The computation of 

𝑹𝑿𝒊|𝑿−𝒊

𝟐  is elucidated in equation (9). 

𝑅
(𝑋𝑖|𝑋−𝑖)
2 = 1 −  

∑ (𝑦𝑖−𝑦�̂�)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

   (9) 

 

Where 𝒚𝒊 and 𝒚�̂� signify the observed and 

predicted values of the target variable for the ith 

data point, respectively. Additionally, �̅� denotes 

the mean value of the observed target variable. 

∑ (𝒚𝒊 − �̅�)𝟐𝒏
𝒊=𝟏  represents the total sum of squared 

errors (TSS), measuring the total variance in the 

target variable prior to regression. Meanwhile, 

∑ (𝒚𝒊 − 𝒚�̂�)
𝟐𝒏

𝒊=𝟏  denotes the residual sum of 

squared errors (RSS), measuring the residual 

variability after regression. 

A coefficient of determination closing to 0 

indicates the absence of collinearity, resulting in a 

VIF value of 1. Conversely, a coefficient of 

determination close to 1 suggests the presence of 
collinearity, leading to higher VIF values. 

Generally, a VIF exceeding 5 indicates a 

substantial collinearity among predictor variables, 

denoting multicollinearity. Hence, in this 

investigation, any causal factor exhibiting a VIF 

value surpassing five was eliminated to mitigate 

the repercussions of multicollinearity. 

 

4.2.2 Information Gain Ratio 

 

The IGR serves as a pivotal metric for 

evaluating a feature's significance and predictive 
efficacy within a dataset acquired through the 

computation of the information gained relative to 

the entropy of the target variable. Entropy, 

denoting the degree of randomness inherent in the 

dataset, spans from 0 to 1, with higher values 

signifying augmented randomness and 

concurrently diminished predictive utility [18]. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  − ∑ 𝑃𝑖 log2(𝑃𝑖)𝑐
𝑖=1       (10) 

 

Equation (10) initially computes the entropy, 

indicating data uncertainty, on the training dataset 

𝑺. Here, the variable 𝒄 denotes the count of 

potential classes. In predicting FLF vulnerability, 

the count of potential classes is fixed at two: FLF 

versus non-FLF. Meanwhile, 𝑷𝒊 signifies the 

proportion of samples affiliated with class i. 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑗) = − ∑ 𝑃𝑖𝑗 log2(𝑃𝑖𝑗)𝑐
𝑗=1      (11) 

 

Subsequently, equation (11) facilitates the 

computation of data entropy for each data 



Wijaya and Arymurthy, Forest and Land Fire Vulnerability Assessment and Mapping using ML   19 

partition (𝑺𝟏, 𝑺𝟐,…, 𝑺𝒏) upon causal factors. Here, 

the variable 𝑭 represents the causal factor under 

scrutiny, with data partitioning predicated on the 

values of the causal factor 𝑭. Concurrently, 𝑷𝒊𝒋 

represents the proportion of samples within 

partition 𝑺𝒋 (resultant partition from causal factor 

𝑭) attributed to class i. 

 

𝐺𝑎𝑖𝑛(𝐹) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − ∑
|𝑆𝑗|

|𝑆|

𝜐
𝑗=1 ∙ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑗)   (12) 

 

Upon acquiring the values of Entropy (𝑺) and 

Entropy (𝑺𝒋), the information gained from the 

causal factor 𝑭 is derivable. Information gain 

embodies the reduction in entropy within dataset 

𝑺, consequent to introducing causal factor 𝑭 or 

Entropy (𝑺𝒋). Equation (12) encapsulates the 

computation of information gain, with 𝝊 denoting 

the count of partitions produced by causal factor 

𝑭. Meanwhile, |𝑺𝒋| signifies the count of samples 

within partitions 𝑺𝒋, and |𝑺| denotes the total 

sample count in dataset 𝑺. 

 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑆, 𝐹) = − ∑
|𝑆𝑗|

|𝑆|
log2 (

|𝑆𝑗|

|𝑆|
)𝜐

𝑗=1    (13) 

 

After this, the 𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐 calculation 

measures the potential information extracted from 

segmenting training data 𝑺 into 𝝊 subsets, 

effectively quantifying how adept causal factors 𝑭 

are at data partitioning. SplitInfo is computed via 

equation (13). 

 

𝐼𝐺𝑅 (𝑆, 𝐹) =
𝐺𝑎𝑖𝑛(𝐹)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑆,𝐹)
  (14) 

 

Finally, IGR can be calculated using equation 

(14). IGR itself is the ratio between information 

𝑮𝒂𝒊𝒏 and 𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐. A higher IGR signifies 
enhanced predictive efficacy, while an IGR of 0 

indicates the incapability of causal factor 𝑭 to 

discriminate among various data classes, 

rendering it ineffective for predictive decision-

making. 

 

4.2.3 Backward Elimination 

 

BE is a feature selection methodology 

commonly employed to eliminate features that 

substantially enhance or decrease classification 
accuracy [19]. This procedure commences by 

formulating a regression model encompassing all 

predictor variables, followed by an assessment of 

the significance of each predictor through 

statistical tests, such as the computation of the p-

value. The p-value measures the statistical 

significance of the association between the 

predictor variable and the target variable, with 

predictors exhibiting higher p-values deemed least 

significant and thus removable from the modeling 

phase. 

Determining the deletion criterion hinges upon 

the value of ρ or retention threshold. A predictor 

variable is slated for deletion if its p-values 

surpass the retention threshold. The rationale 

behind eliminating predictors failing to meet this 

threshold is potentially enhancing classification 

accuracy in subsequent model iterations. 
 

𝑧 =
𝑝−𝑝0

√
𝑝0(1−𝑝0)

𝑛

  (15) 

 

To calculate the p-value (𝒛), equation (15) can 

be utilized, where 𝒏 represents the sample size, 

and �̂� and 𝒑𝟎 denote the sample proportion and 

hypothesized proportion, respectively. While a 
retention threshold of 0.05 is conventionally 

employed to assess the statistical significance of 

predictor variables, in this study, a more lenient 

retention threshold of 0.2 is adopted to enable a 

more permissive approach to feature selection. 

 

4.2.4 Random Forest 

 

The assessment of feature importance 

generated by the RF model constitutes a widely 

utilized metric for feature prioritization across 

diverse domains [20]. The RF model undergoes 
training utilizing the designated training dataset 

within the feature selection procedure. 

Subsequently, the Mean Decrease Impurity (MDI) 

of the causal factor 𝑭 is computed utilizing 

equation (16). Specifically, this feature 

importance measure relies on impurity, quantified 

through the Gini impurity as in equation (17). 

 

𝑀𝐷𝐼 (𝐹) = ∑(𝐼𝑚𝑝𝑃𝑎𝑟𝑒𝑛𝑡 − 𝐼𝑚𝑝𝑐ℎ𝑖𝑙𝑑)           (16) 

 

𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1  (17) 

 

Here, the variable 𝒄 denotes the count of target 

classes, denoting two classes for FLF and Non-

FLF. Meanwhile, 𝒑𝒊 represents the proportion of 

samples allocated to class-i. 𝑴𝑫𝑰 (𝑭) serves as a 

metric delineating the significance of factors 

contributing to 𝑭. The term 𝑰𝒎𝒑𝑷𝒂𝒓𝒆𝒏𝒕 denotes 

the Gini impurity value before the tree is split, 

whereas 𝑰𝒎𝒑𝒄𝒉𝒊𝒍𝒅 signifies the average gini 

impurity post-split across all child nodes. 

 

 
 

 

 

4.3 Machine learning models 
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4.3.1. Gaussian Naive Bayes 

 

 The NB technique is a statistical methodology 

designed to determine the prior probability of an 

event based on the proportion observed in a 

specified output class [17]. This approach is based 

on Bayes' Theorem, as represented by equation 
(18). 

 Where 𝑷(𝒀|𝑿) denotes the posterior 

distribution of the target variable 𝒀 given the 

predictor variable 𝑿(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏), and 𝑷(𝑿|𝒀) 

represents the likelihood of the predictor variable 

𝑿(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏), given a specific value of 

variable 𝒀. The research employs the Gaussian 

Naive Bayes (GNB) techniques, assuming that the 
predictor variables follow a gaussian distribution 

[17]. The gaussian distribution assumes that each 

feature in the data has an independent influence in 

predicting the target variable. Consequently, the 

likelihood probability 𝑷(𝑿𝒊|𝒚𝒊) is estimated by 

considering the mean (𝝁𝒊) and standard deviation 

(𝝈𝒊) of each predictor variable conditioned on its 

respective class. The formulation of Gaussian NB 

is presented in equation (19). Through this 
equation, GNB effectively captures the 

distributional characteristics of the data, enabling 

probabilistic predictions predicated on the 

assumption of a gaussian distribution. 

 

𝑃(𝑌|𝑋) =
𝑃(𝑋|𝑌)∙𝑃(𝑌)

𝑃(𝑋)
         (18) 

 

𝑃(𝑋𝑖|𝑦𝑖) =  (
1

√2𝜋𝜎𝑖
) ∙ exp (−

(𝑋𝑖− 𝜇𝑖)2

2𝜎𝑖
2 )     (19) 

 

4.3.2. Support Vector Machine 

 

The SVM is a statistical machine learning 

algorithm designed to determine the optimal 

hyperplane for data classification. SVM works to 

separate distinct classes within the target variable 

while maximizing classification margins [21]. Its 
framework relies on two fundamental principles: 

employing kernel functions and conceiving an 

optimal classification hyperplane. The search for 

the optimal hyperplane entails solving a linearly 

constrained quadratic programming problem, 

formulated as equation (20). 

 

{
𝑚𝑖𝑛 (

1

2
‖𝑤‖2 +  𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 )

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 +  𝑏) ≥  1 − 𝜉𝑖 ,
𝜉𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛          

               (20) 

 

Here, 𝒘 and 𝒃 denote weight vectors 

determining the hyperplane orientation and bias, 

respectively, while 𝝃𝒊 serves as a positive slack 

variable for data points. The regularization 

parameter 𝑪 balances between training and 

generalization errors [22]. A smaller 𝑪 widens the 

margin, potentially leading to more 

misclassifications, whereas a larger 𝑪 narrows the 

margin, risking overfitting. 
The Lagrange method is employed to solve 

equation (20) [23], yielding the decision function: 

 

𝑦 = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑛
𝑖=1 )     (21) 

Here, 𝒚 denotes the predicted class label, 𝒚𝒊 

represents the class label of the 𝒊-th support 

vector, 𝜶𝒊 signifies the weight or coefficient 

assigned to each support vector, and 𝑲(𝒙𝒊, 𝒙) 

represents a kernel function. 

 

𝐾(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝 (− 
||𝑥𝑖− 𝑥||

2

2𝜎2
)      (22) 

 
In SVM, the Radial Basis Function (RBF) 

kernel is often employed to address nonlinear 

classification challenges. The RBF kernel, utilized 

within SVM, calculates the distance between 

support vector 𝒙𝒊 and input 𝒙 through the 

following equation (22) [24]. Where 𝝈 denotes the 

variance parameter controlling the width of the 

Gaussian distribution. The choice of 𝝈 

significantly influences the smoothness of the 
decision boundary and the model's flexibility [1]. 

 

4.3.3. Logistic Regression 

 

LR is a statistical method for addressing 

binary classification tasks. The LR model 

generates a likelihood value as its output, 

indicating the probability of a specific class 

occurrence based on the observed values of 

predictor variables [5]. This model effectively 

captures the probabilistic relationship between the 
target variables and predictors. 

 

𝑃(𝑦|𝑋) =  
1

1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+ 𝛽𝑛𝑋𝑛)        (23) 

 

The logistic function, also known as the 

sigmoid function, is utilized within the LR models 

to transform a linear combination of predictors 

into values ranging between 0 and 1. The LR 

function, as depicted in equation (23), 

mathematically expresses this transformation. In 

this equation, 𝑷(𝒚|𝑿) represents the probability of 

the target variable 𝒀 given the predictors 

𝑿(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏). 𝜷𝟎 denotes the intercept 

constant, while 𝜷𝒊 represents the regression 

coefficient associated with each predictor (𝒊 =
𝟏, 𝟐, … , 𝒏). 

4.3.4. Artificial Neural Network 
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ANN is a computational model inspired by the 

structure and function of neural networks in the 

human brain. This model aims to process and 

analyze complex information using 

interconnected neurons. The training process in 

ANN aims to find the best weight for each neuron 

unit [23]. ANN consists of three main layers, 

namely the input layer, hidden layer, and output 

layer. The input layer is an input layer whose 

neurons are adjusted according to the number of 
predictor variables. The hidden layer functions to 

process data received from the input layer. The 

output layer produces output from the ANN, so 

the output neurons in the output layer are used as 

indicators of FLF vulnerability [2]. 

ANN uses a backpropagation algorithm, which 

consists of several important stages. First, the 

forward pass stage is carried out to make 

predictions based on the existing or initial weight. 

The second stage of error measurement is carried 

out to calculate the error from the forward pass 
stage. Third, the reverse pass stage is carried out 

to calculate the error contribution for each neuron 

connection. Finally, the gradient descent stage is 

used to update the ANN parameters [25]. 

 

4.3.5. Random Forest 

 

 The RF algorithm, an ensemble learning 

technique, is frequently applied in classification 

and regression tasks. RF comprises numerous 

decision trees whose collective predictions 
enhance the accuracy of prediction. By 

aggregating the outputs of individual trees, RF 

yields a final prediction [2]. The convergence of 

the generalization error in RF is contingent upon 

augmenting the number of trees. Thus, 

determining the optimal number of trees becomes 

imperative for achieving convergence [26]. 

 The learning process of RF entails iterative 

procedures involving data resampling with 

replacement and random alterations in predictor 

sets. Leveraging this stochasticity ensures that 

each tree within the ensemble concentrates on 
distinct facets of the dataset. Employing 

replacement during sampling introduces 

variability among decision trees, mitigating 

overfitting issues and enhancing the algorithm's 

generalization capability [17]. 

 

4.3.6. Gradient Boosting Machine 

 

 The GBM represents an ensemble learning 

technique rooted in tree-based algorithms aimed 

at enhancing the predictive capabilities of a 
singular model by amalgamating multiple models. 

In contrast to the RF algorithm, GBM iteratively 

constructs trees, with each subsequent tree 

endeavoring to rectify the errors stemming from 

its predecessor. Notably, the subsequent tree is 

derived by minimizing residual errors resulting 

from the preceding tree's predictions. This 

iterative process persists until either the predictive 

outcomes stabilize, or the predefined maximum 

threshold of trees is attained [2]. 

 

4.3.7. Extreme Gradient Boosting 

 XGB represents a scalable and efficient tree-
based ensemble learning algorithm renowned for 

its efficacy in classification and regression tasks. 

Unlike GBM, XGB differentiates itself through its 

adeptness at mitigating overfitting during training. 

This is achieved by implementing two 

supplementary methodologies: shrinkage and 

column subsampling. The incorporation of these 

techniques not only enhances model robustness 

but also elevates overall predictive accuracy [2]. 

 

4.4 Evaluation metrics 
 

4.4.1 Statistical methods 

 

Statistical indices are increasingly prevalent in 

evaluating the efficacy of individual ML models. 

Various metrics, such as accuracy, precision, 

recall, and F1-score, are frequently employed. The 

mathematical formulations are delineated in Table 

3 [19], where TP, TN, FP, and FN denote true 

positive, true negative, false positive, and false 

negative predictions, respectively. 
 

Table 3. Statistical evaluation metric [19]. 

Evaluation Metrics Equation 

Accuracy (Acc) 
𝑨𝒄𝒄 =

𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

Precision (Prec) 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Recall (Rec) 
𝑹𝒆𝒄𝒂𝒍𝒍 =

𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

F1-Score (F1) 
𝑭𝟏 =

𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

4.4.2 Receiver operating characteristic curve 
 

In assessing the performance of predictive 

models concerning FLF vulnerability, the ROC 

curve—a commonly employed evaluation 

technique within relevant academic 

investigations—is employed in this research. This 

graphical representation illustrates various pairs of 

statistical measures, such as True Positive Rate 

(TPR) and False Positive Rate (FPR), across 

different thresholds [19]. A higher AUC value 

signifies enhanced predictive capacity within the 
model. Thus, an increased AUC value indicates 

the model's effectiveness and quality in predicting 

susceptibility to FLF. 
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (24) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝐹𝑁
                (25) 

 

Within the ROC curve, adjusting the 

classification threshold downwards results in the 

classification of more data as positive, thereby 

refining the predictions of FP and TP. The 

computations for TPR and FPR for each of these 

assessment metrics are presented in equation (24) 

and equation (25) [27]. 

 

5. Result and Analysis 

 

5.1 Multicollinearity analysis 

 

The multicollinearity among predictor 

variables can affect the accuracy of predictive was 

employed to assess multicollinearity across 

models for FLF vulnerability. The VIF technique 

the fourteen causal factors to address this issue. A 

VIF value exceeding 5 denotes significant 

multicollinearity among predictor variables. 
The outcomes of the multicollinearity 

examination are presented in Table 4. According 

to the findings, no evidence of multicollinearity 

was detected among the predictor variables. This 

is shown by the high VIF value, which stands at 

2.916 for the "Average Relative Humidity" factor 

below the threshold of 5. Consequently, no  

elimination of predictor variables was done at this  

phase. 

 
Table 4. Multicollinearity analysis. 

Causal Factors VIF 

Elevation 1.193 

Slope Angle 1.376 

Slope Aspect 1.008 

Plan Curvature 1.292 

TWI  1.440 

Land Cover 1.183 

NDVI 1.204 

Distance To Roads 1.392 

Distance To Rivers 1.118 

Distance To Buildings 1.357 

Annual Rainfall 2.078 

Average Temperature 2.028 

Average Wind Speed 1.365 

Average Relative Humidity 2.916 

 

5.2 Elimination of the less important causal 

factors 

 

Following the multicollinearity analysis, the 

fourteen existent causal factors underwent further 

selection through three different selection 

methods: IGR, BE, and RF. The IGR method 
assesses the predictive effectiveness of each 

causal factor by measuring the informational gain 

it confers relative to the entropy reduction of the 

target variable, where higher IGR values denote 

better predictive ability.  

As shown in Figure 4, the IGR computations 

delineate the performance of each predictor 

variable. Upon feature selection analysis, 

variables such as Distance to Rivers and TWI 

exhibited an IGR value of 0. Consequently, these 
two factors were eliminated, leaving twelve 

predictor variables as the initial feature group for 

subsequent modeling stages. 

 

 
 

Figure 4. IGR of Predictor Variables. Higher IGR values 

indicate increased predictive efficacy. Distance to Rivers and 

TWI display an IGR of 0, indicating ineffectiveness for 

predictive decision-making. 

 

Subsequently, the BE method identifies causal 

factors that either markedly reduce or minimally 

increase classification accuracy, emphasizing 

factors bearing high p-values. The removal 

criterion was established within this selection 

methodology at a p-value threshold of 0.2. 

Table 5 shows the results of p-value 
calculations for each predictor variable using the 

BE method. As explained in the previous 

paragraph, a higher p-value (exceeding the 

threshold) indicates the inability of this factor to 

increase classification accuracy. Therefore, the 

Slope Aspect, Plan Curvature, Distance to Roads, 

and Distance to Rivers exceeded the retention 

threshold, thereby causing these features to be 

removed from the secondary features group. 
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Table 5. p-value computations for each predictor variable. 

Causal factors P-value 

Elevation 0.001 

Slope Angle 0.004 

Slope Aspect 0.672 

Plan Curvature 0.572 

TWI 0.111 

Land Cover 0.001 

NDVI 0.0 

Distance To Roads 0.503 

Distance To Rivers 0.511 

Distance To Buildings 0.0 

Annual Rainfall 0.0 

Average Temperature 0.161 

Average Wind Speed 0.008 

Average Relative Humidity 0.01 

 

Lastly, the RF method in Figure 5 quantifies 

feature importance through gini impurity 

assessment, facilitating the elimination of causal 
factors or predictor variables registering 

importance values below the mean value. 

 

 
 

Figure 5. Feature importance for each predictor variable. The red 

line represents the average feature importance across all predictors. 

Plan Curvature, TWI, NDVI, Land Cover, and Annual Rainfall 

exhibit importance values below the average. 

  

As illustrated in Figure 5, the feature 

importance analysis via the RF method outlines 

variables such as Elevation, Plan Curvature, TWI, 

NDVI, Land Cover, and Annual Rainfall, each 
exhibiting importance values below the average. 

Consequently, these six factors were excluded 

from the third feature group. Employing three 

different feature selection methodologies yields 

three groups of features selected for utilization in 

the subsequent ML modeling phase. 

 

5.3 Model evaluation 

 

The modeling procedure involves the 

implementation of seven distinct ML algorithms. 
Each ML model undergoes training in 10 

iterations, utilizing three groups of features 

derived from feature selection processes. 

Subsequently, these models are compared based 

on their average accuracy and best F1-score to 

identify the optimal feature selection method. 

Hyperparameter optimization for each ML model 

is conducted through the "GridSearchCV" 

approach to find hyperparameter. in Table 6, 

configurations that yield optimal outcomes. The 

bolded values represent the specific 

hyperparameters selected for this study. 

The best model obtained by the best feature 

selection method will then be used for the testing 

stage to be further identified using statistical 

methods and the ROC curve. This evaluation aims 

to assess each model's relative performance and 

predictive ability. 

Based on the findings presented in Table 7, it is 

evident that the choice of feature selection method 
significantly impacts the performance of different 

machine learning models. For GNB modeling, 

both the IGR and BE methods yield the same 

highest F1-score and average accuracy of 0.682 

and 0.643, respectively, indicating that either 

method can be effectively used. In SVM 

modeling, the IGR method demonstrates superior 
Table 6. hyperparameter pool for each method. 

ML 

model 

Hyperparameter Value 

GNB var_smoothing 1e-9, 1e-8, 1e-7, 1e-6, 1e-

5 

SVM Regularization 0.1, 1, 10 

Kernel type linear, rbf 

Kernel coefficient 0.1, 1 

LR Penalty type l1, l2 

Inverse of 

regularization strength 

0.001, 0.01, 0.1, 1, 10, 

100 

Solver liblinear 

Maximum iteration 100, 200, 300, 400, 500 

ANN Hidden layer 2 

Neuron for each hidden 

layer 

16 

Hidden layer activation 

function  

ReLU 

Output layer activation 

function 
Sigmoid 

Loss function Binary cross entropy 

Optimizer Adam optimizer 

Learning rate 0.001 

RF Maximum tree depth 10, 20, 50, 100 

Minimum sample leaf 1, 2, 4 

Minimum sample split 2, 5, 10 

Number of estimators 50, 100, 200 

GBM Maximum tree depth 10, 20, 50, 100 

Minimum sample leaf 1, 2, 4 

Minimum sample split 2, 5, 10 

Number of estimators 50, 100, 200 

Learning rate 0.01, 0.1, 0.2 

XGB Maximum tree depth 10, 20, 50, 100 

Minimum child weight 1, 5, 10 

Subsample ratio 0.6, 0.8, 1.0 

Number of estimators 50, 100, 200 

Learning rate 0.01, 0.1, 0.2 

Gamma 0, 0.1, 0.2 

Scale pos weight 1, 2, 5 

 
  



24   Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), volume 18,   

      issue 1, February 2025 
 

 
Table 7. feature group comparison for each ML modeling. 

ML model Feature group 

(FS method) 

Best  

F1-score 

Average 

Accuracy 

GNB IGR 0.682 0.643 

 BE 0.682 0.643 

 RF 0.655 0.607 

SVM IGR 0.696 0.667 

 BE 0.687 0.657 

 RF 0.668 0.642 

LR IGR 0.666 0.630 

 BE 0.669 0.632 

 RF 0.606 0.606 

ANN IGR 0.670 0.647 

 BE 0.691 0.667 

 RF 0.633 0.621 

RF IGR 0.713 0.681 

 BE 0.711 0.678 

 RF 0.690 0.655 

GBM IGR 0.696 0.665 

 BE 0.701 0.665 

 RF 0.688 0.660 

XGB IGR 0.733 0.663 

 BE 0.726 0.667 

 RF 0.717 0.63 

 

performance, achieving an F1-score of 0.696 and 

an average accuracy of 0.667, making it the 

preferable choice for this model. Conversely, LR 
modeling shows that the BE method produces 

slightly better results, with an F1-score of 0.669 

and an average accuracy of 0.632. Similarly, ANN 

modeling benefits more from the BE method, 

which results in an F1-score of 0.691 and an 

average accuracy of 0.667. In RF modeling, the 

IGR method achieves the highest F1-score and 

average accuracy of 0.713 and 0.681, respectively, 

highlighting its effectiveness. GBM modeling 

reveals that the BE method provides a marginally 

better F1-score of 0.701, while both BE and IGR 

methods yield the same average accuracy of 
0.665. Lastly, in XGB modeling, the IGR method 

stands out with the highest F1-score of 0.733, 

though it has a lower average accuracy of 0.663 

compared to the BE method, which shows an 

average accuracy of 0.667. 

Overall, the IGR method generally enhances 

model accuracy across various modeling 

techniques. This occurs because the IGR method 

effectively identifies and selects the most relevant 

features by measuring the information gain ratio, 

thus improving model performance by reducing 
noise and focusing on significant attributes. 

However, in models like XGB, the higher F1-

score with the IGR method, despite a lower 

average accuracy, suggests that the IGR method is 

better at identifying relevant features that improve 

the balance between precision and recall. 

 

 

 

 
 

Table 8. statistical evaluation of ML models in percentage (%). 

Dataset Model Accuracy Precision Recall F1 

Training GNB 0.626 0.605 0.730 0.662 

 SVM 0.702 0.667 0.810 0.732 

 LR 0.626 0.610 0.705 0.654 

 ANN 0.708 0.682 0.779 0.727 

 RF 0.775 0.729 0.876 0.796 

 GBM 0.810 0.760 0.908 0.827 

 XGB 0.788 0.705 0.989 0.823 

Testing GNB 0.643 0.613 0.770 0.682 

 SVM 0.661 0.627 0.792 0.700 

 LR 0.630 0.606 0.741 0.666 

 ANN 0.647 0.627 0.719 0.670 

 RF 0.681 0.645 0.798 0.713 

 GBM 0.664 0.636 0.762 0.693 

 XGB 0.663 0.605 0.930 0.733 

 

An examination of ML models was carried out 

using a dataset selected through the IGR method, 
as shown in Table 8. During the training phase, 

the GBM model showed the highest accuracy, 

precision, and F1-score, with values of 0.810, 

0.760, and 0.827, respectively, surpassing other 

models. However, the XGB model excelled in the 

recall, achieving an impressive value of 0.989, 

highlighting its ability to capture forest fires 

during training accurately. 

Moving to the testing phase, the RF model had 

the highest accuracy at 0.681 and a precision of 

0.645, indicating its effectiveness in predicting 

forest fire occurrences. Nonetheless, the XGB 
model once again led in recall with a value of 

0.930 and an F1-score of 0.733. Additionally, in 

Figure 6, XGB demonstrated the highest AUC 

value of 0.959 and 0.743, during training and 

testing, confirming its ability to identify FLF 

vulnerability within the NTT Province. 

Upon thorough evaluation, the superior 

performance displayed by the XGB model in both 

training and testing phases makes it the best 

choice for forest fire risk analysis. Its exceptional 

recall rates demonstrate its ability to accurately 
identify forest fire occurrences, which is essential 

for reducing risks. Moreover, its consistently high 

AUC values underscore its reliability in 

identifying FLF vulnerability, enhancing its 

usefulness as a tool for forest fire management 

strategies. Consequently, the XGB model 

represents the most effective approach for 

predicting FLF vulnerability within the NTT 

Province. 
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Figure 6. The ROC curve of GNB, SVM, LR, ANN, RF, GM, 

XGB, and ANN models in FLF Vulnerability assessment: (a) 

training and (b) testing. XGB demonstrated the highest AUC 

value during training and testing. 

 

 
 
Figure 7. FLF Vulnerability Map. Prediction Probabilities 

Classified into Five Risk Classes: Very Low (0%-30%), Low 

(30%-50%), Moderate (50%-70%), High (70%-90%), and 

Very High (90%-100%). 

 

5.4 FLF vulnerability mapping 

 

The trained XGB model was subsequently 

applied to generate predictions regarding the 

vulnerability of FLF across all pixels within the 

raster dataset of NTT Province. Using the Python 
library, Rasterio facilitated the extraction of 

values from individual pixels, enabling the 

deployment of ML models designed for predictive 

analysis on raster datasets. The resulting 

predictions were then exported as TIFF files for 

further classification utilizing ArcGIS Pro.  

Previously, the model was initially trained for 

binary classification, utilizing a binary system (0-

1) based on the training dataset. However, in line 

with common practice [2], [5], [8], [10], models 

are now required to produce vulnerability maps 

with five different levels or classes during their 

application phase. This modification process 

involves using the trained initial model to predict 

each pixel's probability. Subsequently, through 

post-processing techniques, we manually 
categorize these probabilities into five distinct 

classes: very low, low, moderate, high, and very 

high, thus enabling the model to produce 

vulnerability assessments across multiple classes 

despite its binary classification training. The FLF 

vulnerability map within NTT Province is shown 

in Figure 7. 

 

5.5 Causal analysis 
 

The FLF vulnerability map generated in this 
study was subsequently analyzed to find the 

underlying factors contributing to FLF in the NTT 

Province. Comparative analysis was conducted 

between the FLF raster map (Figure 7) and 

various raster representing pertinent causal factors 

(Figure 3). The analysis aimed to identify the 

raster classes associated with the highest 

incidence of FLF, particularly those falling within 

the high and very high vulnerability categories.  

The findings reveal that areas with elevations 

between 0-400 meters (Class 2) have the highest 
FLF risk, with a 67.77% class distribution. Slopes 

with an angle of less than 5 degrees (Class 1) also 

show a high FLF risk, comprising 30.8% of the 

distribution. Northern-facing slopes (Class 1) 

have a higher, but less significant, FLF risk at 

13.32%. Plan curvature in concave and convex 

shapes (Classes 1 and 3) is associated with higher 

FLF risks (40.45% and 42.38%, respectively) than 

in flat areas. Forest land cover (Class 8) is 

particularly vulnerable, with a risk distribution of 

75.03%. Areas with unhealthy or less fertile 

vegetation, indicated by an NDVI range of 0 to 
0.33 (Class 2), show a substantial risk of 69.96%.  

Moreover, distance to roads within 200 meters 

(Class 1) is a significant risk factor at 32.33%. 

Buildings located more than 2000 meters from 

forested areas (Class 5) have a risk distribution of 

30.78%. Areas with annual rainfall between 51-99 

mm (Class 2) have a risk distribution of 29.75%. 

The highest FLF risk, 31.5%, is found in areas 

with an average temperature of 27.672-27.923 

degrees Celsius (Class 10). Similarly, average 

wind speeds of 2.859 to 3.079 m/s (Class 6) 
contribute 16.79% to the risk distribution. Finally, 

regions with an average relative humidity of 

72.695 to 73.949 mm/day (Class 1) show a 

(a) 

(b) 
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significant risk, representing 22.25% of the class 

distribution. 

Based on the analysis of findings, it was 

determined that various factors contribute to FLF 

in NTT Province. Therefore, several strategies are 

proposed to mitigate these fires. Initially, land 

management practices should target high-risk 

areas by introducing fire-resistant vegetation 
species, such as Laban, Dadap Duri, 

Mediterranean cypress, Agarwood, banana, areca 

palm, and pawpaw trees, known for their high 

moisture content and resilience to fires [28]. 

Secondly, sustainable forest management policies 

should be enforced, with strict monitoring of fire-

prone activities [29]. Satellite surveillance can 

identify areas with low NDVI values, prompting 

proactive measures to enhance plant health [30]. 

Public outreach and education campaigns are 

crucial for raising awareness about fire prevention 
and environmental conservation [31]. Thirdly, 

infrastructural improvements are necessary to 

combat FLF effectively, including enhancing 

firefighting facilities and road accessibility to 

vulnerable areas. Moreover, monitoring water 

sources and ensuring adequate water availability 

are vital measures. 

Addressing FLF in NTT Province demands 

collaborative efforts across sectors. 

Implementation of these solutions requires 

cooperation among government agencies, 

communities, and relevant stakeholders to achieve 
optimal response and prevention outcomes. 

 

6. Conclusion 

 

The analysis identifies the best combination 

for predicting FLF vulnerability in NTT Province 

as the IGR method with the XGB model. The 

AUC scores show 0.959 for training and 0.743 for 

testing. Factors causing FLF in NTT Province 

include Elevation, Slope Angle, Slope Aspect, 

Land Cover, NDVI, Distance to Roads and 
Buildings, Annual Rainfall, Average Temperature, 

Average Wind Speed, and Average Relative 

Humidity. The FLF vulnerability map generated 

in this study was subsequently analyzed to find 

the underlying factors contributing to FLF in the 

NTT Province. Based on these findings, some 

approaches were proposed to reduce FLF risk in 

NTT Province, including land management 

strategies, planting fire-resistant vegetation, 

enforcing sustainable forest management policies, 

monitoring fire-prone activities, running public 

awareness campaigns, and improving 
infrastructure. 
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